Skip to content

Commit ad4ad22

Browse files
DOC/CLN: remove versionadded/changed:: 0.21 (#33301)
1 parent ef1cac3 commit ad4ad22

File tree

24 files changed

+4
-106
lines changed

24 files changed

+4
-106
lines changed

doc/source/development/contributing.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -791,7 +791,7 @@ the ``pandas.util._decorators.deprecate``:
791791
792792
from pandas.util._decorators import deprecate
793793
794-
deprecate('old_func', 'new_func', '0.21.0')
794+
deprecate('old_func', 'new_func', '1.1.0')
795795
796796
Otherwise, you need to do it manually:
797797

@@ -803,7 +803,7 @@ Otherwise, you need to do it manually:
803803
def old_func():
804804
"""Summary of the function.
805805
806-
.. deprecated:: 0.21.0
806+
.. deprecated:: 1.1.0
807807
Use new_func instead.
808808
"""
809809
warnings.warn('Use new_func instead.', FutureWarning, stacklevel=2)
@@ -1354,9 +1354,9 @@ directive is used. The sphinx syntax for that is:
13541354

13551355
.. code-block:: rst
13561356
1357-
.. versionadded:: 0.21.0
1357+
.. versionadded:: 1.1.0
13581358
1359-
This will put the text *New in version 0.21.0* wherever you put the sphinx
1359+
This will put the text *New in version 1.1.0* wherever you put the sphinx
13601360
directive. This should also be put in the docstring when adding a new function
13611361
or method (`example <https://github.com/pandas-dev/pandas/blob/v0.20.2/pandas/core/frame.py#L1495>`__)
13621362
or a new keyword argument (`example <https://github.com/pandas-dev/pandas/blob/v0.20.2/pandas/core/generic.py#L568>`__).

doc/source/user_guide/basics.rst

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1224,8 +1224,6 @@ following can be done:
12241224
This means that the reindexed Series's index is the same Python object as the
12251225
DataFrame's index.
12261226

1227-
.. versionadded:: 0.21.0
1228-
12291227
:meth:`DataFrame.reindex` also supports an "axis-style" calling convention,
12301228
where you specify a single ``labels`` argument and the ``axis`` it applies to.
12311229

@@ -1435,8 +1433,6 @@ Series can also be used:
14351433
If the mapping doesn't include a column/index label, it isn't renamed. Note that
14361434
extra labels in the mapping don't throw an error.
14371435

1438-
.. versionadded:: 0.21.0
1439-
14401436
:meth:`DataFrame.rename` also supports an "axis-style" calling convention, where
14411437
you specify a single ``mapper`` and the ``axis`` to apply that mapping to.
14421438

doc/source/user_guide/categorical.rst

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -211,8 +211,6 @@ To get back to the original ``Series`` or NumPy array, use
211211
CategoricalDtype
212212
----------------
213213

214-
.. versionchanged:: 0.21.0
215-
216214
A categorical's type is fully described by
217215

218216
1. ``categories``: a sequence of unique values and no missing values

doc/source/user_guide/groupby.rst

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1327,8 +1327,6 @@ See the :ref:`visualization documentation<visualization.box>` for more.
13271327
Piping function calls
13281328
~~~~~~~~~~~~~~~~~~~~~
13291329

1330-
.. versionadded:: 0.21.0
1331-
13321330
Similar to the functionality provided by ``DataFrame`` and ``Series``, functions
13331331
that take ``GroupBy`` objects can be chained together using a ``pipe`` method to
13341332
allow for a cleaner, more readable syntax. To read about ``.pipe`` in general terms,

doc/source/user_guide/io.rst

Lines changed: 0 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -461,8 +461,6 @@ specification:
461461
462462
pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
463463
464-
.. versionadded:: 0.21.0
465-
466464
Specifying ``dtype='category'`` will result in an unordered ``Categorical``
467465
whose ``categories`` are the unique values observed in the data. For more
468466
control on the categories and order, create a
@@ -2171,8 +2169,6 @@ Line delimited json
21712169
pandas is able to read and write line-delimited json files that are common in data processing pipelines
21722170
using Hadoop or Spark.
21732171

2174-
.. versionadded:: 0.21.0
2175-
21762172
For line-delimited json files, pandas can also return an iterator which reads in ``chunksize`` lines at a time. This can be useful for large files or to read from a stream.
21772173

21782174
.. ipython:: python
@@ -4646,8 +4642,6 @@ Read from a feather file.
46464642
Parquet
46474643
-------
46484644

4649-
.. versionadded:: 0.21.0
4650-
46514645
`Apache Parquet <https://parquet.apache.org/>`__ provides a partitioned binary columnar serialization for data frames. It is designed to
46524646
make reading and writing data frames efficient, and to make sharing data across data analysis
46534647
languages easy. Parquet can use a variety of compression techniques to shrink the file size as much as possible

doc/source/user_guide/merging.rst

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -573,8 +573,6 @@ all standard database join operations between ``DataFrame`` or named ``Series``
573573
dataset.
574574
* "many_to_many" or "m:m": allowed, but does not result in checks.
575575

576-
.. versionadded:: 0.21.0
577-
578576
.. note::
579577

580578
Support for specifying index levels as the ``on``, ``left_on``, and
@@ -773,8 +771,6 @@ Here is another example with duplicate join keys in DataFrames:
773771
Checking for duplicate keys
774772
~~~~~~~~~~~~~~~~~~~~~~~~~~~
775773

776-
.. versionadded:: 0.21.0
777-
778774
Users can use the ``validate`` argument to automatically check whether there
779775
are unexpected duplicates in their merge keys. Key uniqueness is checked before
780776
merge operations and so should protect against memory overflows. Checking key

pandas/_libs/lib.pyx

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1197,8 +1197,6 @@ def infer_dtype(value: object, skipna: bool = True) -> str:
11971197
skipna : bool, default True
11981198
Ignore NaN values when inferring the type.
11991199

1200-
.. versionadded:: 0.21.0
1201-
12021200
Returns
12031201
-------
12041202
str

pandas/core/arrays/categorical.py

Lines changed: 0 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -242,8 +242,6 @@ class Categorical(ExtensionArray, PandasObject):
242242
dtype : CategoricalDtype
243243
An instance of ``CategoricalDtype`` to use for this categorical.
244244
245-
.. versionadded:: 0.21.0
246-
247245
Attributes
248246
----------
249247
categories : Index
@@ -257,8 +255,6 @@ class Categorical(ExtensionArray, PandasObject):
257255
The instance of ``CategoricalDtype`` storing the ``categories``
258256
and ``ordered``.
259257
260-
.. versionadded:: 0.21.0
261-
262258
Methods
263259
-------
264260
from_codes
@@ -876,8 +872,6 @@ def rename_categories(self, new_categories, inplace=False):
876872
are passed through and extra categories in the mapping are
877873
ignored.
878874
879-
.. versionadded:: 0.21.0.
880-
881875
* callable : a callable that is called on all items in the old
882876
categories and whose return values comprise the new categories.
883877
@@ -1306,7 +1300,6 @@ def __setstate__(self, state):
13061300
if not isinstance(state, dict):
13071301
raise Exception("invalid pickle state")
13081302

1309-
# compat with pre 0.21.0 CategoricalDtype change
13101303
if "_dtype" not in state:
13111304
state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"])
13121305

pandas/core/common.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -357,8 +357,6 @@ def standardize_mapping(into):
357357
"""
358358
Helper function to standardize a supplied mapping.
359359
360-
.. versionadded:: 0.21.0
361-
362360
Parameters
363361
----------
364362
into : instance or subclass of collections.abc.Mapping

pandas/core/dtypes/dtypes.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -189,8 +189,6 @@ class CategoricalDtype(PandasExtensionDtype, ExtensionDtype):
189189
"""
190190
Type for categorical data with the categories and orderedness.
191191
192-
.. versionchanged:: 0.21.0
193-
194192
Parameters
195193
----------
196194
categories : sequence, optional

0 commit comments

Comments
 (0)