1
+ {
2
+ "cells" : [
3
+ {
4
+ "cell_type" : " markdown" ,
5
+ "source" : [
6
+ " It is not recomended to build DataFrames by adding single rows in a\n " ,
7
+ " not loop. Build a list of rows and make a DataFrame in a single concat.\n " ,
8
+ " \n "
9
+ ],
10
+ "metadata" : {
11
+ "collapsed" : false ,
12
+ "pycharm" : {
13
+ "name" : " #%% md\n "
14
+ }
15
+ }
16
+ },
17
+ {
18
+ "cell_type" : " code" ,
19
+ "execution_count" : 22 ,
20
+ "outputs" : [],
21
+ "source" : [
22
+ " import pandas as pd"
23
+ ],
24
+ "metadata" : {
25
+ "collapsed" : false ,
26
+ "pycharm" : {
27
+ "name" : " #%%\n "
28
+ }
29
+ }
30
+ },
31
+ {
32
+ "cell_type" : " code" ,
33
+ "execution_count" : 23 ,
34
+ "outputs" : [
35
+ {
36
+ "data" : {
37
+ "text/plain" : " A B\n 0 1 2" ,
38
+ "text/html" : " <div>\n <style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n </style>\n <table border=\" 1\" class=\" dataframe\" >\n <thead>\n <tr style=\" text-align: right;\" >\n <th></th>\n <th>A</th>\n <th>B</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>1</td>\n <td>2</td>\n </tr>\n </tbody>\n </table>\n </div>"
39
+ },
40
+ "execution_count" : 23 ,
41
+ "metadata" : {},
42
+ "output_type" : " execute_result"
43
+ }
44
+ ],
45
+ "source" : [
46
+ " a = pd.DataFrame({\" A\" : 1, \" B\" : 2}, index=[0])\n " ,
47
+ " a"
48
+ ],
49
+ "metadata" : {
50
+ "collapsed" : false ,
51
+ "pycharm" : {
52
+ "name" : " #%%\n "
53
+ }
54
+ }
55
+ },
56
+ {
57
+ "cell_type" : " code" ,
58
+ "execution_count" : 24 ,
59
+ "outputs" : [
60
+ {
61
+ "data" : {
62
+ "text/plain" : " 0 3\n dtype: int64"
63
+ },
64
+ "execution_count" : 24 ,
65
+ "metadata" : {},
66
+ "output_type" : " execute_result"
67
+ }
68
+ ],
69
+ "source" : [
70
+ " new_row = pd.Series([3])\n " ,
71
+ " new_row"
72
+ ],
73
+ "metadata" : {
74
+ "collapsed" : false ,
75
+ "pycharm" : {
76
+ "name" : " #%%\n "
77
+ }
78
+ }
79
+ },
80
+ {
81
+ "cell_type" : " code" ,
82
+ "execution_count" : 25 ,
83
+ "outputs" : [
84
+ {
85
+ "data" : {
86
+ "text/plain" : " A B 0\n 0 1.0 2.0 NaN\n 1 NaN NaN 3.0" ,
87
+ "text/html" : " <div>\n <style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n </style>\n <table border=\" 1\" class=\" dataframe\" >\n <thead>\n <tr style=\" text-align: right;\" >\n <th></th>\n <th>A</th>\n <th>B</th>\n <th>0</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>1.0</td>\n <td>2.0</td>\n <td>NaN</td>\n </tr>\n <tr>\n <th>1</th>\n <td>NaN</td>\n <td>NaN</td>\n <td>3.0</td>\n </tr>\n </tbody>\n </table>\n </div>"
88
+ },
89
+ "execution_count" : 25 ,
90
+ "metadata" : {},
91
+ "output_type" : " execute_result"
92
+ }
93
+ ],
94
+ "source" : [
95
+ " pd.concat([a, new_row.to_frame().T], ignore_index=True)"
96
+ ],
97
+ "metadata" : {
98
+ "collapsed" : false ,
99
+ "pycharm" : {
100
+ "name" : " #%%\n "
101
+ }
102
+ }
103
+ },
104
+ {
105
+ "cell_type" : " code" ,
106
+ "execution_count" : 25 ,
107
+ "outputs" : [],
108
+ "source" : [],
109
+ "metadata" : {
110
+ "collapsed" : false ,
111
+ "pycharm" : {
112
+ "name" : " #%%\n "
113
+ }
114
+ }
115
+ },
116
+ {
117
+ "cell_type" : " code" ,
118
+ "execution_count" : 25 ,
119
+ "outputs" : [],
120
+ "source" : [],
121
+ "metadata" : {
122
+ "collapsed" : false ,
123
+ "pycharm" : {
124
+ "name" : " #%%\n "
125
+ }
126
+ }
127
+ },
128
+ {
129
+ "cell_type" : " code" ,
130
+ "execution_count" : 25 ,
131
+ "outputs" : [],
132
+ "source" : [],
133
+ "metadata" : {
134
+ "collapsed" : false ,
135
+ "pycharm" : {
136
+ "name" : " #%%\n "
137
+ }
138
+ }
139
+ },
140
+ {
141
+ "cell_type" : " code" ,
142
+ "execution_count" : 25 ,
143
+ "outputs" : [],
144
+ "source" : [],
145
+ "metadata" : {
146
+ "collapsed" : false ,
147
+ "pycharm" : {
148
+ "name" : " #%%\n "
149
+ }
150
+ }
151
+ },
152
+ {
153
+ "cell_type" : " code" ,
154
+ "execution_count" : 25 ,
155
+ "outputs" : [],
156
+ "source" : [],
157
+ "metadata" : {
158
+ "collapsed" : false ,
159
+ "pycharm" : {
160
+ "name" : " #%%\n "
161
+ }
162
+ }
163
+ },
164
+ {
165
+ "cell_type" : " code" ,
166
+ "execution_count" : 26 ,
167
+ "outputs" : [],
168
+ "source" : [
169
+ " # b = pd.DataFrame({\" A\" : 3}, index=[0])\n " ,
170
+ " # b"
171
+ ],
172
+ "metadata" : {
173
+ "collapsed" : false ,
174
+ "pycharm" : {
175
+ "name" : " #%%\n "
176
+ }
177
+ }
178
+ },
179
+ {
180
+ "cell_type" : " code" ,
181
+ "execution_count" : 26 ,
182
+ "outputs" : [],
183
+ "source" : [],
184
+ "metadata" : {
185
+ "collapsed" : false ,
186
+ "pycharm" : {
187
+ "name" : " #%%\n "
188
+ }
189
+ }
190
+ }
191
+ ],
192
+ "metadata" : {
193
+ "kernelspec" : {
194
+ "display_name" : " Python 3" ,
195
+ "language" : " python" ,
196
+ "name" : " python3"
197
+ },
198
+ "language_info" : {
199
+ "codemirror_mode" : {
200
+ "name" : " ipython" ,
201
+ "version" : 2
202
+ },
203
+ "file_extension" : " .py" ,
204
+ "mimetype" : " text/x-python" ,
205
+ "name" : " python" ,
206
+ "nbconvert_exporter" : " python" ,
207
+ "pygments_lexer" : " ipython2" ,
208
+ "version" : " 2.7.6"
209
+ }
210
+ },
211
+ "nbformat" : 4 ,
212
+ "nbformat_minor" : 0
213
+ }
0 commit comments