@@ -5376,12 +5376,12 @@ def is_unique(
5376
5376
self , subset : Optional [Union [Hashable , Sequence [Hashable ]]] = None
5377
5377
) -> Series :
5378
5378
"""
5379
- Return boolean Series denoting columns with unique values.
5379
+ Return boolean Series denoting which columns have unique values.
5380
5380
5381
5381
Parameters
5382
5382
----------
5383
5383
subset : column label or sequence of labels, optional
5384
- Only consider certain columns for finding uniques. by default use columns.
5384
+ Only check subset of columns for uniques. By default checks all columns.
5385
5385
5386
5386
Returns
5387
5387
-------
@@ -5390,9 +5390,32 @@ def is_unique(
5390
5390
See Also
5391
5391
--------
5392
5392
DataFrame.duplicated : Indicate duplicate rows.
5393
+
5394
+ Examples
5395
+ --------
5396
+ >>> df = pd.DataFrame([('falcon', 'bird', 389.0),
5397
+ ... ('parrot', 'bird', 24.0),
5398
+ ... ('lion', 'mammal', 80.5),
5399
+ ... ('monkey', 'mammal', np.nan)],
5400
+ ... columns=('name', 'class', 'max_speed'))
5401
+ >>> df
5402
+ name class max_speed
5403
+ 0 falcon bird 389.0
5404
+ 1 parrot bird 24.0
5405
+ 2 lion mammal 80.5
5406
+ 3 monkey mammal NaN
5407
+ >>> df.is_unique()
5408
+ name True
5409
+ class False
5410
+ max_speed True
5411
+ dtype: bool
5412
+ >>> df.is_unique(["name", "class"])
5413
+ name True
5414
+ class False
5415
+ dtype: bool
5393
5416
"""
5394
5417
if subset is not None :
5395
- subset = subset if is_list_like (subset ) else [ subset ]
5418
+ subset = com . maybe_make_list (subset )
5396
5419
self = self [subset ]
5397
5420
5398
5421
if len (self .columns ):
0 commit comments