|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +"""Change directory to provide relative paths for doctests |
| 3 | + >>> import os |
| 4 | + >>> filepath = os.path.dirname( os.path.realpath( __file__ ) ) |
| 5 | + >>> datadir = os.path.realpath(os.path.join(filepath, '../../testing/data')) |
| 6 | + >>> os.chdir(datadir) |
| 7 | +""" |
| 8 | + |
| 9 | +from nipype.interfaces.base import ( |
| 10 | + traits, TraitedSpec, BaseInterface, BaseInterfaceInputSpec, File, |
| 11 | + InputMultiPath, isdefined) |
| 12 | +from nipype.utils.filemanip import split_filename |
| 13 | +import os.path as op |
| 14 | +import nibabel as nb |
| 15 | +import numpy as np |
| 16 | +from nipype.utils.misc import package_check |
| 17 | +import warnings |
| 18 | + |
| 19 | +from multiprocessing import (Process, Pool, cpu_count, pool, |
| 20 | + Manager, TimeoutError) |
| 21 | + |
| 22 | +from ... import logging |
| 23 | +iflogger = logging.getLogger('interface') |
| 24 | + |
| 25 | +have_dipy = True |
| 26 | +try: |
| 27 | + package_check('dipy', version='0.8.0') |
| 28 | +except Exception, e: |
| 29 | + have_dipy = False |
| 30 | +else: |
| 31 | + import numpy as np |
| 32 | + from dipy.sims.voxel import (multi_tensor, add_noise, |
| 33 | + all_tensor_evecs) |
| 34 | + from dipy.core.gradients import gradient_table |
| 35 | + |
| 36 | + |
| 37 | +class SimulateMultiTensorInputSpec(BaseInterfaceInputSpec): |
| 38 | + in_dirs = InputMultiPath(File(exists=True), mandatory=True, |
| 39 | + desc='list of fibers (principal directions)') |
| 40 | + in_frac = InputMultiPath(File(exists=True), mandatory=True, |
| 41 | + desc=('volume fraction of each fiber')) |
| 42 | + in_vfms = InputMultiPath(File(exists=True), mandatory=True, |
| 43 | + desc=('volume fractions of isotropic ' |
| 44 | + 'compartiments')) |
| 45 | + in_mask = File(exists=True, desc='mask to simulate data') |
| 46 | + |
| 47 | + diff_iso = traits.List( |
| 48 | + [3000e-6, 960e-6, 680e-6], traits.Float, usedefault=True, |
| 49 | + desc='Diffusivity of isotropic compartments') |
| 50 | + diff_sf = traits.Tuple( |
| 51 | + (1700e-6, 200e-6, 200e-6), |
| 52 | + traits.Float, traits.Float, traits.Float, usedefault=True, |
| 53 | + desc='Single fiber tensor') |
| 54 | + |
| 55 | + n_proc = traits.Int(0, usedefault=True, desc='number of processes') |
| 56 | + baseline = File(exists=True, mandatory=True, desc='baseline T2 signal') |
| 57 | + gradients = File(exists=True, desc='gradients file') |
| 58 | + in_bvec = File(exists=True, desc='input bvecs file') |
| 59 | + in_bval = File(exists=True, desc='input bvals file') |
| 60 | + num_dirs = traits.Int(32, usedefault=True, |
| 61 | + desc=('number of gradient directions (when table ' |
| 62 | + 'is automatically generated)')) |
| 63 | + bvalues = traits.List(traits.Int, value=[1000, 3000], usedefault=True, |
| 64 | + desc=('list of b-values (when table ' |
| 65 | + 'is automatically generated)')) |
| 66 | + out_file = File('sim_dwi.nii.gz', usedefault=True, |
| 67 | + desc='output file with fractions to be simluated') |
| 68 | + out_mask = File('sim_msk.nii.gz', usedefault=True, |
| 69 | + desc='file with the mask simulated') |
| 70 | + out_bvec = File('bvec.sim', usedefault=True, desc='simulated b vectors') |
| 71 | + out_bval = File('bval.sim', usedefault=True, desc='simulated b values') |
| 72 | + snr = traits.Int(0, usedefault=True, desc='signal-to-noise ratio (dB)') |
| 73 | + |
| 74 | + |
| 75 | +class SimulateMultiTensorOutputSpec(TraitedSpec): |
| 76 | + out_file = File(exists=True, desc='simulated DWIs') |
| 77 | + out_mask = File(exists=True, desc='mask file') |
| 78 | + out_bvec = File(exists=True, desc='simulated b vectors') |
| 79 | + out_bval = File(exists=True, desc='simulated b values') |
| 80 | + |
| 81 | + |
| 82 | +class SimulateMultiTensor(BaseInterface): |
| 83 | + |
| 84 | + """ |
| 85 | + Interface to MultiTensor model simulator in dipy |
| 86 | + http://nipy.org/dipy/examples_built/simulate_multi_tensor.html |
| 87 | +
|
| 88 | + Example |
| 89 | + ------- |
| 90 | +
|
| 91 | + >>> import nipype.interfaces.dipy as dipy |
| 92 | + >>> sim = dipy.SimulateMultiTensor() |
| 93 | + >>> sim.inputs.in_dirs = ['fdir00.nii', 'fdir01.nii'] |
| 94 | + >>> sim.inputs.in_frac = ['ffra00.nii', 'ffra01.nii'] |
| 95 | + >>> sim.inputs.in_vfms = ['tpm_00.nii.gz', 'tpm_01.nii.gz', |
| 96 | + ... 'tpm_02.nii.gz'] |
| 97 | + >>> sim.inputs.baseline = 'b0.nii' |
| 98 | + >>> sim.inputs.in_bvec = 'bvecs' |
| 99 | + >>> sim.inputs.in_bval = 'bvals' |
| 100 | + >>> sim.run() # doctest: +SKIP |
| 101 | + """ |
| 102 | + input_spec = SimulateMultiTensorInputSpec |
| 103 | + output_spec = SimulateMultiTensorOutputSpec |
| 104 | + |
| 105 | + def _run_interface(self, runtime): |
| 106 | + # Gradient table |
| 107 | + if isdefined(self.inputs.in_bval) and isdefined(self.inputs.in_bvec): |
| 108 | + # Load the gradient strengths and directions |
| 109 | + bvals = np.loadtxt(self.inputs.in_bval) |
| 110 | + bvecs = np.loadtxt(self.inputs.in_bvec).T |
| 111 | + gtab = gradient_table(bvals, bvecs) |
| 112 | + else: |
| 113 | + gtab = _generate_gradients(self.inputs.num_dirs, |
| 114 | + self.inputs.bvalues) |
| 115 | + ndirs = len(gtab.bvals) |
| 116 | + np.savetxt(op.abspath(self.inputs.out_bvec), gtab.bvecs.T) |
| 117 | + np.savetxt(op.abspath(self.inputs.out_bval), gtab.bvals) |
| 118 | + |
| 119 | + # Load the baseline b0 signal |
| 120 | + b0_im = nb.load(self.inputs.baseline) |
| 121 | + hdr = b0_im.get_header() |
| 122 | + shape = b0_im.get_shape() |
| 123 | + aff = b0_im.get_affine() |
| 124 | + |
| 125 | + # Check and load sticks and their volume fractions |
| 126 | + nsticks = len(self.inputs.in_dirs) |
| 127 | + if len(self.inputs.in_frac) != nsticks: |
| 128 | + raise RuntimeError(('Number of sticks and their volume fractions' |
| 129 | + ' must match.')) |
| 130 | + |
| 131 | + # Volume fractions of isotropic compartments |
| 132 | + nballs = len(self.inputs.in_vfms) |
| 133 | + vfs = np.squeeze(nb.concat_images( |
| 134 | + [nb.load(f) for f in self.inputs.in_vfms]).get_data()) |
| 135 | + if nballs == 1: |
| 136 | + vfs = vfs[..., np.newaxis] |
| 137 | + total_vf = np.sum(vfs, axis=3) |
| 138 | + |
| 139 | + # Generate a mask |
| 140 | + if isdefined(self.inputs.in_mask): |
| 141 | + msk = nb.load(self.inputs.in_mask).get_data() |
| 142 | + msk[msk > 0.0] = 1.0 |
| 143 | + msk[msk < 1.0] = 0.0 |
| 144 | + else: |
| 145 | + msk = np.zeros(shape) |
| 146 | + msk[total_vf > 0.0] = 1.0 |
| 147 | + |
| 148 | + msk = np.clip(msk, 0.0, 1.0) |
| 149 | + nvox = len(msk[msk > 0]) |
| 150 | + |
| 151 | + # Fiber fractions |
| 152 | + ffsim = nb.concat_images([nb.load(f) for f in self.inputs.in_frac]) |
| 153 | + ffs = np.nan_to_num(np.squeeze(ffsim.get_data())) # fiber fractions |
| 154 | + ffs = np.clip(ffs, 0., 1.) |
| 155 | + if nsticks == 1: |
| 156 | + ffs = ffs[..., np.newaxis] |
| 157 | + |
| 158 | + for i in range(nsticks): |
| 159 | + ffs[..., i] *= msk |
| 160 | + |
| 161 | + total_ff = np.sum(ffs, axis=3) |
| 162 | + |
| 163 | + # Fix incongruencies in fiber fractions |
| 164 | + for i in range(1, nsticks): |
| 165 | + if np.any(total_ff > 1.0): |
| 166 | + errors = np.zeros_like(total_ff) |
| 167 | + errors[total_ff > 1.0] = total_ff[total_ff > 1.0] - 1.0 |
| 168 | + ffs[..., i] -= errors |
| 169 | + ffs[ffs < 0.0] = 0.0 |
| 170 | + total_ff = np.sum(ffs, axis=3) |
| 171 | + |
| 172 | + for i in range(vfs.shape[-1]): |
| 173 | + vfs[..., i] -= total_ff |
| 174 | + vfs = np.clip(vfs, 0., 1.) |
| 175 | + |
| 176 | + fractions = np.concatenate((ffs, vfs), axis=3) |
| 177 | + |
| 178 | + nb.Nifti1Image(fractions, aff, None).to_filename('fractions.nii.gz') |
| 179 | + nb.Nifti1Image(np.sum(fractions, axis=3), aff, None).to_filename( |
| 180 | + 'total_vf.nii.gz') |
| 181 | + |
| 182 | + mhdr = hdr.copy() |
| 183 | + mhdr.set_data_dtype(np.uint8) |
| 184 | + mhdr.set_xyzt_units('mm', 'sec') |
| 185 | + nb.Nifti1Image(msk, aff, mhdr).to_filename( |
| 186 | + op.abspath(self.inputs.out_mask)) |
| 187 | + |
| 188 | + # Initialize stack of args |
| 189 | + fracs = fractions[msk > 0] |
| 190 | + |
| 191 | + # Stack directions |
| 192 | + dirs = None |
| 193 | + for i in range(nsticks): |
| 194 | + f = self.inputs.in_dirs[i] |
| 195 | + fd = np.nan_to_num(nb.load(f).get_data()) |
| 196 | + w = np.linalg.norm(fd, axis=3)[..., np.newaxis] |
| 197 | + w[w < np.finfo(float).eps] = 1.0 |
| 198 | + fd /= w |
| 199 | + if dirs is None: |
| 200 | + dirs = fd[msk > 0].copy() |
| 201 | + else: |
| 202 | + dirs = np.hstack((dirs, fd[msk > 0])) |
| 203 | + |
| 204 | + # Add random directions for isotropic components |
| 205 | + for d in range(nballs): |
| 206 | + fd = np.random.randn(nvox, 3) |
| 207 | + w = np.linalg.norm(fd, axis=1) |
| 208 | + fd[w < np.finfo(float).eps, ...] = np.array([1., 0., 0.]) |
| 209 | + w[w < np.finfo(float).eps] = 1.0 |
| 210 | + fd /= w[..., np.newaxis] |
| 211 | + dirs = np.hstack((dirs, fd)) |
| 212 | + |
| 213 | + sf_evals = list(self.inputs.diff_sf) |
| 214 | + ba_evals = list(self.inputs.diff_iso) |
| 215 | + |
| 216 | + mevals = [sf_evals] * nsticks + \ |
| 217 | + [[ba_evals[d]] * 3 for d in range(nballs)] |
| 218 | + |
| 219 | + b0 = b0_im.get_data()[msk > 0] |
| 220 | + args = [] |
| 221 | + for i in range(nvox): |
| 222 | + args.append( |
| 223 | + {'fractions': fracs[i, ...].tolist(), |
| 224 | + 'sticks': [tuple(dirs[i, j:j + 3]) |
| 225 | + for j in range(nsticks + nballs)], |
| 226 | + 'gradients': gtab, |
| 227 | + 'mevals': mevals, |
| 228 | + 'S0': b0[i], |
| 229 | + 'snr': self.inputs.snr |
| 230 | + }) |
| 231 | + |
| 232 | + n_proc = self.inputs.n_proc |
| 233 | + if n_proc == 0: |
| 234 | + n_proc = cpu_count() |
| 235 | + |
| 236 | + try: |
| 237 | + pool = Pool(processes=n_proc, maxtasksperchild=50) |
| 238 | + except TypeError: |
| 239 | + pool = Pool(processes=n_proc) |
| 240 | + |
| 241 | + # Simulate sticks using dipy |
| 242 | + iflogger.info(('Starting simulation of %d voxels, %d diffusion' |
| 243 | + ' directions.') % (len(args), ndirs)) |
| 244 | + result = np.array(pool.map(_compute_voxel, args)) |
| 245 | + if np.shape(result)[1] != ndirs: |
| 246 | + raise RuntimeError(('Computed directions do not match number' |
| 247 | + 'of b-values.')) |
| 248 | + |
| 249 | + signal = np.zeros((shape[0], shape[1], shape[2], ndirs)) |
| 250 | + signal[msk > 0] = result |
| 251 | + |
| 252 | + simhdr = hdr.copy() |
| 253 | + simhdr.set_data_dtype(np.float32) |
| 254 | + simhdr.set_xyzt_units('mm', 'sec') |
| 255 | + nb.Nifti1Image(signal.astype(np.float32), aff, |
| 256 | + simhdr).to_filename(op.abspath(self.inputs.out_file)) |
| 257 | + |
| 258 | + return runtime |
| 259 | + |
| 260 | + def _list_outputs(self): |
| 261 | + outputs = self._outputs().get() |
| 262 | + outputs['out_file'] = op.abspath(self.inputs.out_file) |
| 263 | + outputs['out_mask'] = op.abspath(self.inputs.out_mask) |
| 264 | + outputs['out_bvec'] = op.abspath(self.inputs.out_bvec) |
| 265 | + outputs['out_bval'] = op.abspath(self.inputs.out_bval) |
| 266 | + |
| 267 | + return outputs |
| 268 | + |
| 269 | + |
| 270 | +def _compute_voxel(args): |
| 271 | + """ |
| 272 | + Simulate DW signal for one voxel. Uses the multi-tensor model and |
| 273 | + three isotropic compartments. |
| 274 | +
|
| 275 | + Apparent diffusivity tensors are taken from [Alexander2002]_ |
| 276 | + and [Pierpaoli1996]_. |
| 277 | +
|
| 278 | + .. [Alexander2002] Alexander et al., Detection and modeling of non-Gaussian |
| 279 | + apparent diffusion coefficient profiles in human brain data, MRM |
| 280 | + 48(2):331-340, 2002, doi: `10.1002/mrm.10209 |
| 281 | + <http://dx.doi.org/10.1002/mrm.10209>`_. |
| 282 | + .. [Pierpaoli1996] Pierpaoli et al., Diffusion tensor MR imaging |
| 283 | + of the human brain, Radiology 201:637-648. 1996. |
| 284 | + """ |
| 285 | + |
| 286 | + ffs = args['fractions'] |
| 287 | + gtab = args['gradients'] |
| 288 | + signal = np.zeros_like(gtab.bvals, dtype=np.float32) |
| 289 | + |
| 290 | + # Simulate dwi signal |
| 291 | + sf_vf = np.sum(ffs) |
| 292 | + if sf_vf > 0.0: |
| 293 | + ffs = ((np.array(ffs) / sf_vf) * 100) |
| 294 | + snr = args['snr'] if args['snr'] > 0 else None |
| 295 | + |
| 296 | + try: |
| 297 | + signal, _ = multi_tensor( |
| 298 | + gtab, args['mevals'], S0=args['S0'], |
| 299 | + angles=args['sticks'], fractions=ffs, snr=snr) |
| 300 | + except Exception as e: |
| 301 | + pass |
| 302 | + # iflogger.warn('Exception simulating dwi signal: %s' % e) |
| 303 | + |
| 304 | + return signal.tolist() |
| 305 | + |
| 306 | + |
| 307 | +def _generate_gradients(ndirs=64, values=[1000, 3000], nb0s=1): |
| 308 | + """ |
| 309 | + Automatically generate a `gradient table |
| 310 | + <http://nipy.org/dipy/examples_built/gradients_spheres.html#example-gradients-spheres>`_ |
| 311 | +
|
| 312 | + """ |
| 313 | + import numpy as np |
| 314 | + from dipy.core.sphere import (disperse_charges, Sphere, HemiSphere) |
| 315 | + from dipy.core.gradients import gradient_table |
| 316 | + |
| 317 | + theta = np.pi * np.random.rand(ndirs) |
| 318 | + phi = 2 * np.pi * np.random.rand(ndirs) |
| 319 | + hsph_initial = HemiSphere(theta=theta, phi=phi) |
| 320 | + hsph_updated, potential = disperse_charges(hsph_initial, 5000) |
| 321 | + |
| 322 | + values = np.atleast_1d(values).tolist() |
| 323 | + vertices = hsph_updated.vertices |
| 324 | + bvecs = vertices.copy() |
| 325 | + bvals = np.ones(vertices.shape[0]) * values[0] |
| 326 | + |
| 327 | + for v in values[1:]: |
| 328 | + bvecs = np.vstack((bvecs, vertices)) |
| 329 | + bvals = np.hstack((bvals, v * np.ones(vertices.shape[0]))) |
| 330 | + |
| 331 | + for i in xrange(0, nb0s): |
| 332 | + bvals = bvals.tolist() |
| 333 | + bvals.insert(0, 0) |
| 334 | + |
| 335 | + bvecs = bvecs.tolist() |
| 336 | + bvecs.insert(0, np.zeros(3)) |
| 337 | + |
| 338 | + return gradient_table(bvals, bvecs) |
0 commit comments