-
Notifications
You must be signed in to change notification settings - Fork 469
/
Copy pathmodel_utils.py
361 lines (301 loc) · 12.6 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
import requests
import urllib.parse
import librosa
import soundfile as sf
import re
import numpy as np
import ddsp
import ddsp.training
import pickle
import gin
from ddsp.training.postprocessing import (
detect_notes, fit_quantile_transform
)
# from ddsp.colab.colab_utils import (
# auto_tune, get_tuning_factor
# )
import tensorflow.compat.v2 as tf
import pdb
import torch
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.models.wav2vec2.modeling_wav2vec2 import (
Wav2Vec2PreTrainedModel,
Wav2Vec2Model
)
from transformers.models.hubert.modeling_hubert import (
HubertPreTrainedModel,
HubertModel
)
from dataclasses import dataclass
from typing import Optional, Tuple
from transformers.file_utils import ModelOutput
@dataclass
class SpeechClassifierOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class Wav2Vec2ClassificationHead(nn.Module):
"""Head for wav2vec classification task."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class Wav2Vec2ForSpeechClassification(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.pooling_mode = config.pooling_mode
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = Wav2Vec2ClassificationHead(config)
self.init_weights()
def freeze_feature_extractor(self):
self.wav2vec2.feature_extractor._freeze_parameters()
def merged_strategy(
self,
hidden_states,
mode="mean"
):
if mode == "mean":
outputs = torch.mean(hidden_states, dim=1)
elif mode == "sum":
outputs = torch.sum(hidden_states, dim=1)
elif mode == "max":
outputs = torch.max(hidden_states, dim=1)[0]
else:
raise Exception(
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")
return outputs
def forward(
self,
input_values,
attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SpeechClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def shift_ld(audio_features, ld_shift=0.0):
"""Shift loudness by a number of ocatves."""
audio_features['loudness_db'] += ld_shift
return audio_features
def shift_f0(audio_features, pitch_shift=0.0):
"""Shift f0 by a number of ocatves."""
audio_features['f0_hz'] *= 2.0 ** (pitch_shift)
audio_features['f0_hz'] = np.clip(audio_features['f0_hz'],
0.0,
librosa.midi_to_hz(110.0))
return audio_features
def timbre_transfer(filename, out_path, instrument="violin", sample_rate=16000):
audio, _ = librosa.load(filename, sr=sample_rate)
audio = audio[np.newaxis, :]
# Setup the session.
ddsp.spectral_ops.reset_crepe()
audio_features = ddsp.training.metrics.compute_audio_features(audio)
model_dir = f"models/ddsp/{instrument}"
gin_file = os.path.join(model_dir, 'operative_config-0.gin')
DATASET_STATS = None
dataset_stats_file = os.path.join(model_dir, 'dataset_statistics.pkl')
if tf.io.gfile.exists(dataset_stats_file):
with tf.io.gfile.GFile(dataset_stats_file, 'rb') as f:
DATASET_STATS = pickle.load(f)
with gin.unlock_config():
gin.parse_config_file(gin_file, skip_unknown=True)
ckpt_files = [f for f in tf.io.gfile.listdir(model_dir) if 'ckpt' in f]
ckpt_name = ckpt_files[0].split('.')[0]
ckpt = os.path.join(model_dir, ckpt_name)
time_steps_train = gin.query_parameter('F0LoudnessPreprocessor.time_steps')
n_samples_train = gin.query_parameter('Harmonic.n_samples')
hop_size = int(n_samples_train / time_steps_train)
time_steps = int(audio.shape[1] / hop_size)
n_samples = time_steps * hop_size
gin_params = [
'Harmonic.n_samples = {}'.format(n_samples),
'FilteredNoise.n_samples = {}'.format(n_samples),
'F0LoudnessPreprocessor.time_steps = {}'.format(time_steps),
'oscillator_bank.use_angular_cumsum = True', # Avoids cumsum accumulation errors.
]
with gin.unlock_config():
gin.parse_config(gin_params)
for key in ['f0_hz', 'f0_confidence', 'loudness_db']:
audio_features[key] = audio_features[key][:time_steps]
audio_features['audio'] = audio_features['audio'][:, :n_samples]
model = ddsp.training.models.Autoencoder()
model.restore(ckpt)
threshold = 1
ADJUST = True
quiet = 20
autotune = 0
pitch_shift = 0
loudness_shift = 0
audio_features_mod = {k: v.copy() for k, v in audio_features.items()}
mask_on = None
if ADJUST and DATASET_STATS is not None:
# Detect sections that are "on".
mask_on, note_on_value = detect_notes(audio_features['loudness_db'],
audio_features['f0_confidence'],
threshold)
if np.any(mask_on):
# Shift the pitch register.
target_mean_pitch = DATASET_STATS['mean_pitch']
pitch = ddsp.core.hz_to_midi(audio_features['f0_hz'])
mean_pitch = np.mean(pitch[mask_on])
p_diff = target_mean_pitch - mean_pitch
p_diff_octave = p_diff / 12.0
round_fn = np.floor if p_diff_octave > 1.5 else np.ceil
p_diff_octave = round_fn(p_diff_octave)
audio_features_mod = shift_f0(audio_features_mod, p_diff_octave)
# Quantile shift the note_on parts.
_, loudness_norm = fit_quantile_transform(
audio_features['loudness_db'],
mask_on,
inv_quantile=DATASET_STATS['quantile_transform'])
# Turn down the note_off parts.
mask_off = np.logical_not(mask_on)
loudness_norm[mask_off] -= quiet * (1.0 - note_on_value[mask_off][:, np.newaxis])
loudness_norm = np.reshape(loudness_norm, audio_features['loudness_db'].shape)
audio_features_mod['loudness_db'] = loudness_norm
# Auto-tune.
if autotune:
f0_midi = np.array(ddsp.core.hz_to_midi(audio_features_mod['f0_hz']))
tuning_factor = get_tuning_factor(f0_midi, audio_features_mod['f0_confidence'], mask_on)
f0_midi_at = auto_tune(f0_midi, tuning_factor, mask_on, amount=autotune)
audio_features_mod['f0_hz'] = ddsp.core.midi_to_hz(f0_midi_at)
else:
print('\nSkipping auto-adjust (no notes detected or ADJUST box empty).')
af = audio_features if audio_features_mod is None else audio_features_mod
outputs = model(af, training=False)
audio_gen = model.get_audio_from_outputs(outputs)
sf.write(out_path, audio_gen[0], sample_rate)
def pad_wave_mixing(file_name1, file_name2, out_path='mixed_audio.wav', sr=16000):
audio1, _ = librosa.load(file_name1, sr=sr)
audio2, _ = librosa.load(file_name2, sr=sr)
max_len = max(len(audio1), len(audio2))
audio1 = librosa.util.fix_length(audio1, size=max_len)
audio2 = librosa.util.fix_length(audio2, size=max_len)
mixed_audio = audio1 + audio2
sf.write(out_path, mixed_audio, sr)
def spotify_search(src, tgt, output_file_name, client_id, client_secret):
# request API access token
url = "https://accounts.spotify.com/api/token"
headers = {
"Content-Type": "application/x-www-form-urlencoded"
}
data = {
"grant_type": "client_credentials",
"client_id": client_id,
"client_secret": client_secret
}
response = requests.post(url, headers=headers, data=data)
if response.status_code == 200:
token_data = response.json()
access_token = token_data["access_token"]
print("Access Token:", access_token)
else:
print("Error:", response.status_code)
# POST query
query = ["remaster"]
for key in src:
if key in ["track", "album", "artist", "genre"]:
value = " ".join(src[key])
query.append(f"{key}:{value}")
if tgt == "playlist":
query[0] = src["description"][0]
query = " ".join(query).replace(" ", "%20")
query = urllib.parse.quote(query)
url = f"https://api.spotify.com/v1/search?query={query}&type={tgt}"
headers = {"Authorization": f"Bearer {access_token}"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()[tgt + "s"]["items"][0]
text = dict()
spotify_id = data["id"]
text[tgt] = [data["name"]]
if tgt == "track":
url = data["preview_url"]
with open(output_file_name, "wb") as f:
f.write(requests.get(url).content)
text["album"] = [data["album"]["name"]]
text["artist"] = [d["name"] for d in data["artists"]]
if tgt == "album":
text["date"] = [data["release_date"]]
text["artist"] = [d["name"] for d in data["artists"]]
url = f"https://api.spotify.com/v1/albums/{spotify_id}"
album = requests.get(url, headers=headers).json()
if len(album["genres"]) > 0:
text["genre"] = album["genres"]
text["track"] = [d["name"] for d in album["tracks"]["items"]]
if tgt == "playlist":
url = f"https://api.spotify.com/v1/playlists/{spotify_id}"
album = requests.get(url, headers=headers).json()
text["track"] = [d["track"]["name"] for d in album["tracks"]["items"]]
if tgt == "artist":
if len(data["genres"]) > 0:
text["genre"] = data["genres"]
return text
else:
print('Response Failed: ', response.status_code)
return None
def lyric_format(text):
text = text.split('\n\n')
delimiters = "\n|,.;?!,。;、?!"
text = [re.split("["+delimiters+"]", chap) for chap in text]
i = 0
while i < len(text):
if len(text[i]) == 1:
text.pop(i)
continue
if len(text[i]) > 4:
text[i] = text[i][1:]
i += 1
return ' '.join([' '.join(chap) for chap in text]).split()