diff --git a/llvm/lib/CodeGen/MachineLICM.cpp b/llvm/lib/CodeGen/MachineLICM.cpp index 6c5170e918e00..1c76d72ed5152 100644 --- a/llvm/lib/CodeGen/MachineLICM.cpp +++ b/llvm/lib/CodeGen/MachineLICM.cpp @@ -426,38 +426,29 @@ static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { static void applyBitsNotInRegMaskToRegUnitsMask(const TargetRegisterInfo &TRI, BitVector &RUs, const uint32_t *Mask) { - // Iterate over the RegMask raw to avoid constructing a BitVector, which is - // expensive as it implies dynamically allocating memory. - // - // We also work backwards. + BitVector ClobberedRUs(TRI.getNumRegUnits(), true); const unsigned NumRegs = TRI.getNumRegs(); const unsigned MaskWords = (NumRegs + 31) / 32; for (unsigned K = 0; K < MaskWords; ++K) { - // We want to set the bits that aren't in RegMask, so flip it. - uint32_t Word = ~Mask[K]; - - // Iterate all set bits, starting from the right. - while (Word) { - const unsigned SetBitIdx = countr_zero(Word); - - // The bits are numbered from the LSB in each word. - const unsigned PhysReg = (K * 32) + SetBitIdx; - - // Clear the bit at SetBitIdx. Doing it this way appears to generate less - // instructions on x86. This works because negating a number will flip all - // the bits after SetBitIdx. So (Word & -Word) == (1 << SetBitIdx), but - // faster. - Word ^= Word & -Word; + const uint32_t Word = Mask[K]; + if (!Word) + continue; + for (unsigned Bit = 0; Bit < 32; ++Bit) { + const unsigned PhysReg = (K * 32) + Bit; if (PhysReg == NumRegs) - return; + break; - if (PhysReg) { + // Check if we have a valid PhysReg that is set in the mask. + // FIXME: We shouldn't have to check for PhysReg. + if (PhysReg && ((Word >> Bit) & 1)) { for (MCRegUnitIterator RUI(PhysReg, &TRI); RUI.isValid(); ++RUI) - RUs.set(*RUI); + ClobberedRUs.reset(*RUI); } } } + + RUs |= ClobberedRUs; } /// Examine the instruction for potentai LICM candidate. Also diff --git a/llvm/test/CodeGen/AMDGPU/indirect-call.ll b/llvm/test/CodeGen/AMDGPU/indirect-call.ll index da8aa54469835..7799b9509ceb0 100644 --- a/llvm/test/CodeGen/AMDGPU/indirect-call.ll +++ b/llvm/test/CodeGen/AMDGPU/indirect-call.ll @@ -886,12 +886,12 @@ define void @test_indirect_call_vgpr_ptr_inreg_arg(ptr %fptr) { ; GCN-NEXT: v_writelane_b32 v40, s62, 30 ; GCN-NEXT: v_writelane_b32 v40, s63, 31 ; GCN-NEXT: s_mov_b64 s[6:7], exec +; GCN-NEXT: s_movk_i32 s4, 0x7b ; GCN-NEXT: .LBB6_1: ; =>This Inner Loop Header: Depth=1 ; GCN-NEXT: v_readfirstlane_b32 s8, v0 ; GCN-NEXT: v_readfirstlane_b32 s9, v1 ; GCN-NEXT: v_cmp_eq_u64_e32 vcc, s[8:9], v[0:1] ; GCN-NEXT: s_and_saveexec_b64 s[10:11], vcc -; GCN-NEXT: s_movk_i32 s4, 0x7b ; GCN-NEXT: s_swappc_b64 s[30:31], s[8:9] ; GCN-NEXT: ; implicit-def: $vgpr0_vgpr1 ; GCN-NEXT: s_xor_b64 exec, exec, s[10:11] @@ -980,12 +980,12 @@ define void @test_indirect_call_vgpr_ptr_inreg_arg(ptr %fptr) { ; GISEL-NEXT: v_writelane_b32 v40, s62, 30 ; GISEL-NEXT: v_writelane_b32 v40, s63, 31 ; GISEL-NEXT: s_mov_b64 s[6:7], exec +; GISEL-NEXT: s_movk_i32 s4, 0x7b ; GISEL-NEXT: .LBB6_1: ; =>This Inner Loop Header: Depth=1 ; GISEL-NEXT: v_readfirstlane_b32 s8, v0 ; GISEL-NEXT: v_readfirstlane_b32 s9, v1 ; GISEL-NEXT: v_cmp_eq_u64_e32 vcc, s[8:9], v[0:1] ; GISEL-NEXT: s_and_saveexec_b64 s[10:11], vcc -; GISEL-NEXT: s_movk_i32 s4, 0x7b ; GISEL-NEXT: s_swappc_b64 s[30:31], s[8:9] ; GISEL-NEXT: ; implicit-def: $vgpr0 ; GISEL-NEXT: s_xor_b64 exec, exec, s[10:11]