|
1 | 1 | //===-- Implementation of sqrtf128 function -------------------------------===//
|
2 | 2 | //
|
| 3 | +// Copyright (c) 2024 Alexei Sibidanov <[email protected]> |
| 4 | +// |
3 | 5 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
4 | 6 | // See https://llvm.org/LICENSE.txt for license information.
|
5 | 7 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
6 | 8 | //
|
7 | 9 | //===----------------------------------------------------------------------===//
|
8 | 10 |
|
9 | 11 | #include "src/math/sqrtf128.h"
|
10 |
| -#include "src/__support/FPUtil/sqrt.h" |
| 12 | +#include "src/__support/CPP/bit.h" |
| 13 | +#include "src/__support/FPUtil/FEnvImpl.h" |
| 14 | +#include "src/__support/FPUtil/FPBits.h" |
| 15 | +#include "src/__support/FPUtil/rounding_mode.h" |
11 | 16 | #include "src/__support/common.h"
|
12 |
| -#include "src/__support/macros/config.h" |
| 17 | +#include "src/__support/macros/optimization.h" |
| 18 | +#include "src/__support/uint128.h" |
13 | 19 |
|
14 | 20 | namespace LIBC_NAMESPACE_DECL {
|
15 | 21 |
|
| 22 | +using FPBits = fputil::FPBits<float128>; |
| 23 | + |
| 24 | +namespace { |
| 25 | + |
| 26 | +template <typename T, typename U = T> static inline constexpr T prod_hi(T, U); |
| 27 | + |
| 28 | +// Get high part of integer multiplications. |
| 29 | +// Use template to prevent implicit conversion. |
| 30 | +template <> |
| 31 | +inline constexpr uint64_t prod_hi<uint64_t>(uint64_t x, uint64_t y) { |
| 32 | + return static_cast<uint64_t>( |
| 33 | + (static_cast<UInt128>(x) * static_cast<UInt128>(y)) >> 64); |
| 34 | +} |
| 35 | + |
| 36 | +// Get high part of unsigned 128x64 bit multiplication. |
| 37 | +template <> |
| 38 | +inline constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 y, uint64_t x) { |
| 39 | + uint64_t y_lo = static_cast<uint64_t>(y); |
| 40 | + uint64_t y_hi = static_cast<uint64_t>(y >> 64); |
| 41 | + UInt128 xyl = static_cast<UInt128>(x) * static_cast<UInt128>(y_lo); |
| 42 | + UInt128 xyh = static_cast<UInt128>(x) * static_cast<UInt128>(y_hi); |
| 43 | + return xyh + (xyl >> 64); |
| 44 | +} |
| 45 | + |
| 46 | +// Get high part of signed 64x64 bit multiplication. |
| 47 | +template <> inline constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) { |
| 48 | + return static_cast<int64_t>( |
| 49 | + (static_cast<Int128>(x) * static_cast<Int128>(y)) >> 64); |
| 50 | +} |
| 51 | + |
| 52 | +// Get high 128-bit part of unsigned 128x128 bit multiplication. |
| 53 | +template <> inline constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) { |
| 54 | + uint64_t x_lo = static_cast<uint64_t>(x); |
| 55 | + uint64_t x_hi = static_cast<uint64_t>(x >> 64); |
| 56 | + uint64_t y_lo = static_cast<uint64_t>(y); |
| 57 | + uint64_t y_hi = static_cast<uint64_t>(y >> 64); |
| 58 | + |
| 59 | + UInt128 xh_yh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_hi); |
| 60 | + UInt128 xh_yl = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_lo); |
| 61 | + UInt128 xl_yh = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y_hi); |
| 62 | + |
| 63 | + xh_yh += xh_yl >> 64; |
| 64 | + |
| 65 | + return xh_yh + (xl_yh >> 64); |
| 66 | +} |
| 67 | + |
| 68 | +// Get high 128-bit part of mixed sign 128x128 bit multiplication. |
| 69 | +template <> |
| 70 | +inline constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) { |
| 71 | + UInt128 mask = static_cast<UInt128>(x >> 127); |
| 72 | + UInt128 negative_part = y & mask; |
| 73 | + UInt128 prod = prod_hi(static_cast<UInt128>(x), y); |
| 74 | + return static_cast<Int128>(prod - negative_part); |
| 75 | +} |
| 76 | + |
| 77 | +constexpr uint32_t RSQRT_COEFFS[64][4] = { |
| 78 | + {0xffffffff, 0xfffff780, 0xbff55815, 0x9bb5b6e7}, |
| 79 | + {0xfc0bd889, 0xfa1d6e7d, 0xb8a95a89, 0x938bf8f0}, |
| 80 | + {0xf82ec882, 0xf473bea9, 0xb1bf4705, 0x8bed0079}, |
| 81 | + {0xf467f280, 0xeefff2a1, 0xab309d4a, 0x84cdb431}, |
| 82 | + {0xf0b6848c, 0xe9bf46f4, 0xa4f76232, 0x7e24037b}, |
| 83 | + {0xed19b75e, 0xe4af2628, 0x9f0e1340, 0x77e6ca62}, |
| 84 | + {0xe990cdad, 0xdfcd2521, 0x996f9b96, 0x720db8df}, |
| 85 | + {0xe61b138e, 0xdb16ffde, 0x94174a00, 0x6c913cff}, |
| 86 | + {0xe2b7dddf, 0xd68a967b, 0x8f00c812, 0x676a6f92}, |
| 87 | + {0xdf6689b7, 0xd225ea80, 0x8a281226, 0x62930308}, |
| 88 | + {0xdc267bea, 0xcde71c63, 0x8589702c, 0x5e05343e}, |
| 89 | + {0xd8f7208e, 0xc9cc6948, 0x81216f2e, 0x59bbbcf8}, |
| 90 | + {0xd5d7ea91, 0xc5d428ee, 0x7cecdb76, 0x55b1c7d6}, |
| 91 | + {0xd2c8534e, 0xc1fccbc9, 0x78e8bb45, 0x51e2e592}, |
| 92 | + {0xcfc7da32, 0xbe44d94a, 0x75124a0a, 0x4e4b0369}, |
| 93 | + {0xccd6045f, 0xbaaaee41, 0x7166f40f, 0x4ae66284}, |
| 94 | + {0xc9f25c5c, 0xb72dbb69, 0x6de45288, 0x47b19045}, |
| 95 | + {0xc71c71c7, 0xb3cc040f, 0x6a882804, 0x44a95f5f}, |
| 96 | + {0xc453d90f, 0xb0849cd4, 0x67505d2a, 0x41cae1a0}, |
| 97 | + {0xc1982b2e, 0xad566a85, 0x643afdc8, 0x3f13625c}, |
| 98 | + {0xbee9056f, 0xaa406113, 0x6146361f, 0x3c806169}, |
| 99 | + {0xbc46092e, 0xa7418293, 0x5e70506d, 0x3a0f8e8e}, |
| 100 | + {0xb9aedba5, 0xa458de58, 0x5bb7b2b1, 0x37bec572}, |
| 101 | + {0xb72325b7, 0xa1859022, 0x591adc9a, 0x358c09e2}, |
| 102 | + {0xb4a293c2, 0x9ec6bf52, 0x569865a7, 0x33758476}, |
| 103 | + {0xb22cd56d, 0x9c1b9e36, 0x542efb6a, 0x31797f8a}, |
| 104 | + {0xafc19d86, 0x9983695c, 0x51dd5ffb, 0x2f96647a}, |
| 105 | + {0xad60a1d1, 0x96fd66f7, 0x4fa2687c, 0x2dcab91f}, |
| 106 | + {0xab099ae9, 0x9488e64b, 0x4d7cfbc9, 0x2c151d8a}, |
| 107 | + {0xa8bc441a, 0x92253f20, 0x4b6c1139, 0x2a7449ef}, |
| 108 | + {0xa6785b42, 0x8fd1d14a, 0x496eaf82, 0x28e70cc3}, |
| 109 | + {0xa43da0ae, 0x8d8e042a, 0x4783eba7, 0x276c4900}, |
| 110 | + {0xa20bd701, 0x8b594648, 0x45aae80a, 0x2602f493}, |
| 111 | + {0x9fe2c315, 0x89330ce4, 0x43e2d382, 0x24aa16ec}, |
| 112 | + {0x9dc22be4, 0x871ad399, 0x422ae88c, 0x2360c7af}, |
| 113 | + {0x9ba9da6c, 0x85101c05, 0x40826c88, 0x22262d7b}, |
| 114 | + {0x99999999, 0x83126d70, 0x3ee8af07, 0x20f97cd2}, |
| 115 | + {0x97913630, 0x81215480, 0x3d5d0922, 0x1fd9f714}, |
| 116 | + {0x95907eb8, 0x7f3c62ef, 0x3bdedce0, 0x1ec6e994}, |
| 117 | + {0x93974369, 0x7d632f45, 0x3a6d94a9, 0x1dbfacbb}, |
| 118 | + {0x91a55615, 0x7b955498, 0x3908a2be, 0x1cc3a33b}, |
| 119 | + {0x8fba8a1c, 0x79d2724e, 0x37af80bf, 0x1bd23960}, |
| 120 | + {0x8dd6b456, 0x781a2be4, 0x3661af39, 0x1aeae458}, |
| 121 | + {0x8bf9ab07, 0x766c28ba, 0x351eb539, 0x1a0d21a2}, |
| 122 | + {0x8a2345cc, 0x74c813dd, 0x33e61feb, 0x19387676}, |
| 123 | + {0x88535d90, 0x732d9bdc, 0x32b7823a, 0x186c6f3e}, |
| 124 | + {0x8689cc7e, 0x719c7297, 0x3192747d, 0x17a89f21}, |
| 125 | + {0x84c66df1, 0x70144d19, 0x30769424, 0x16ec9f89}, |
| 126 | + {0x83091e6a, 0x6e94e36c, 0x2f63836f, 0x16380fbf}, |
| 127 | + {0x8151bb87, 0x6d1df079, 0x2e58e925, 0x158a9484}, |
| 128 | + {0x7fa023f1, 0x6baf31de, 0x2d567053, 0x14e3d7ba}, |
| 129 | + {0x7df43758, 0x6a4867d3, 0x2c5bc811, 0x1443880e}, |
| 130 | + {0x7c4dd664, 0x68e95508, 0x2b68a346, 0x13a958ab}, |
| 131 | + {0x7aace2b0, 0x6791be86, 0x2a7cb871, 0x131500ee}, |
| 132 | + {0x79113ebc, 0x66416b95, 0x2997c17a, 0x12863c29}, |
| 133 | + {0x777acde8, 0x64f825a1, 0x28b97b82, 0x11fcc95c}, |
| 134 | + {0x75e9746a, 0x63b5b822, 0x27e1a6b4, 0x11786b03}, |
| 135 | + {0x745d1746, 0x6279f081, 0x2710061d, 0x10f8e6da}, |
| 136 | + {0x72d59c46, 0x61449e06, 0x26445f86, 0x107e05ac}, |
| 137 | + {0x7152e9f4, 0x601591be, 0x257e7b4d, 0x10079327}, |
| 138 | + {0x6fd4e793, 0x5eec9e6b, 0x24be2445, 0x0f955da9}, |
| 139 | + {0x6e5b7d16, 0x5dc9986e, 0x24032795, 0x0f273620}, |
| 140 | + {0x6ce6931d, 0x5cac55b7, 0x234d5496, 0x0ebcefdb}, |
| 141 | + {0x6b7612ec, 0x5b94adb2, 0x229c7cbc, 0x0e56606e}, |
| 142 | +}; |
| 143 | + |
| 144 | +// Approximate rsqrt with cubic polynomials. |
| 145 | +// The range [1,2] is splitted into 64 equal sub-ranges and the reciprocal |
| 146 | +// square root is approximated by a cubic polynomial by the minimax method in |
| 147 | +// each subrange. The approximation accuracy fits into 32-33 bits and thus it is |
| 148 | +// natural to round coefficients into 32 bit. The constant coefficient can be |
| 149 | +// rounded to 33 bits since the most significant bit is always 1 and implicitly |
| 150 | +// assumed in the table. |
| 151 | +LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) { |
| 152 | + // ULP(m) = 2^-64. |
| 153 | + // Use the top 6 bits as index for looking up polynomial coeffs. |
| 154 | + uint64_t indx = m >> 58; |
| 155 | + |
| 156 | + uint64_t c0 = static_cast<uint64_t>(RSQRT_COEFFS[indx][0]); |
| 157 | + c0 <<= 31; // to 64 bit with the space for the implicit bit |
| 158 | + c0 |= 1ull << 63; // add implicit bit |
| 159 | + |
| 160 | + uint64_t c1 = static_cast<uint64_t>(RSQRT_COEFFS[indx][1]); |
| 161 | + c1 <<= 25; // to 64 bit format |
| 162 | + |
| 163 | + uint64_t c2 = static_cast<uint64_t>(RSQRT_COEFFS[indx][2]); |
| 164 | + uint64_t c3 = static_cast<uint64_t>(RSQRT_COEFFS[indx][3]); |
| 165 | + |
| 166 | + uint64_t d = (m << 6) >> 32; // local coordinate in the subrange [0, 2^32] |
| 167 | + uint64_t d2 = (d * d) >> 32; // square of the local coordinate |
| 168 | + uint64_t re = c0 + (d2 * c2 >> 13); // even part of the polynomial (positive) |
| 169 | + uint64_t ro = d * ((c1 + ((d2 * c3) >> 19)) >> 26) >> |
| 170 | + 6; // odd part of the polynomial (negative) |
| 171 | + uint64_t r = re - ro; // maximal error < 1.55e-10 and it is less than 2^-32 |
| 172 | + |
| 173 | + // Newton-Raphson first order step to improve accuracy of the result to almost |
| 174 | + // 64 bits: |
| 175 | + // For the initial approximation r0 ~ 1/sqrt(x), let |
| 176 | + // h = r0^2 * x - 1 |
| 177 | + // be its scaled error. Then the first-order Newton-Raphson iteration is: |
| 178 | + // r1 = r0 - r0 * h / 2 |
| 179 | + // which has error bounded by: |
| 180 | + // |r1 - 1/sqrt(x)| < h^2 / 2. |
| 181 | + uint64_t r2 = prod_hi<uint64_t>(r, r); |
| 182 | + // h = r0^2*x - 1. |
| 183 | + int64_t h = static_cast<int64_t>(prod_hi<uint64_t>(m, r2) + r2); |
| 184 | + // hr = r * h / 2 |
| 185 | + int64_t hr = prod_hi<int64_t>(h, static_cast<int64_t>(r >> 1)); |
| 186 | + r -= hr; |
| 187 | + // Adjust in the unlucky case x~1; |
| 188 | + if (LIBC_UNLIKELY(!r)) |
| 189 | + --r; |
| 190 | + return r; |
| 191 | +} |
| 192 | + |
| 193 | +} // anonymous namespace |
| 194 | + |
16 | 195 | LLVM_LIBC_FUNCTION(float128, sqrtf128, (float128 x)) {
|
17 |
| - return fputil::sqrt<float128>(x); |
| 196 | + using FPBits = fputil::FPBits<float128>; |
| 197 | + // Get rounding mode. |
| 198 | + uint32_t rm = fputil::get_round(); |
| 199 | + |
| 200 | + FPBits xbits(x); |
| 201 | + UInt128 x_u = xbits.uintval(); |
| 202 | + // Bring leading bit of the mantissa to the highest bit. |
| 203 | + // ulp(x_frac) = 2^-128. |
| 204 | + UInt128 x_frac = xbits.get_mantissa() << (FPBits::EXP_LEN + 1); |
| 205 | + |
| 206 | + int sign_exp = static_cast<int>(x_u >> FPBits::FRACTION_LEN); |
| 207 | + |
| 208 | + if (LIBC_UNLIKELY(sign_exp == 0 || sign_exp >= 0x7fff)) { |
| 209 | + // Special cases: NAN, inf, negative numbers |
| 210 | + if (sign_exp >= 0x7fff) { |
| 211 | + // x = -0 or x = inf |
| 212 | + if (xbits.is_zero() || xbits == xbits.inf()) |
| 213 | + return x; |
| 214 | + // x is nan |
| 215 | + if (xbits.is_nan()) { |
| 216 | + // pass through quiet nan |
| 217 | + if (xbits.is_quiet_nan()) |
| 218 | + return x; |
| 219 | + // transform signaling nan to quiet and return |
| 220 | + return xbits.quiet_nan().get_val(); |
| 221 | + } |
| 222 | + // x < 0 or x = -inf |
| 223 | + fputil::set_errno_if_required(EDOM); |
| 224 | + fputil::raise_except_if_required(FE_INVALID); |
| 225 | + return xbits.quiet_nan().get_val(); |
| 226 | + } |
| 227 | + // x is subnormal or x=+0 |
| 228 | + if (x == 0) |
| 229 | + return x; |
| 230 | + |
| 231 | + // Normalize subnormal inputs. |
| 232 | + sign_exp = -cpp::countl_zero(x_frac); |
| 233 | + int normal_shifts = 1 - sign_exp; |
| 234 | + x_frac <<= normal_shifts; |
| 235 | + } |
| 236 | + |
| 237 | + // For sign_exp = biased exponent of x = real_exponent + 16383, |
| 238 | + // let f be the real exponent of the output: |
| 239 | + // f = floor(real_exponent / 2) |
| 240 | + // Then: |
| 241 | + // floor((sign_exp + 1) / 2) = f + 8192 |
| 242 | + // Hence, the biased exponent of the final result is: |
| 243 | + // f + 16383 = floor((sign_exp + 1) / 2) + 8191. |
| 244 | + // Since the output mantissa will include the hidden bit, we can define the |
| 245 | + // output exponent part: |
| 246 | + // e2 = floor((sign_exp + 1) / 2) + 8190 |
| 247 | + unsigned i = static_cast<unsigned>(1 - (sign_exp & 1)); |
| 248 | + uint32_t q2 = (sign_exp + 1) >> 1; |
| 249 | + // Exponent of the final result |
| 250 | + uint32_t e2 = q2 + 8190; |
| 251 | + |
| 252 | + constexpr uint64_t RSQRT_2[2] = {~0ull, |
| 253 | + 0xb504f333f9de6484 /* 2^64/sqrt(2) */}; |
| 254 | + |
| 255 | + // Approximate 1/sqrt(1 + x_frac) |
| 256 | + // Error: |r_1 - 1/sqrt(x)| < 2^-63. |
| 257 | + uint64_t r1 = rsqrt_approx(static_cast<uint64_t>(x_frac >> 64)); |
| 258 | + // Adjust for the even/odd exponent. |
| 259 | + uint64_t r2 = prod_hi(r1, RSQRT_2[i]); |
| 260 | + unsigned shift = 2 - i; |
| 261 | + |
| 262 | + // Normalized input: |
| 263 | + // 1 <= x_reduced < 4 |
| 264 | + UInt128 x_reduced = (x_frac >> shift) | (UInt128(1) << (126 + i)); |
| 265 | + // With r2 ~ 1/sqrt(x) up to 2^-63, we perform another round of Newton-Raphson |
| 266 | + // iteration: |
| 267 | + // r3 = r2 - r2 * h / 2, |
| 268 | + // for h = r2^2 * x - 1. |
| 269 | + // Then: |
| 270 | + // sqrt(x) = x * (1 / sqrt(x)) |
| 271 | + // ~ x * r3 |
| 272 | + // = x * (r2 - r2 * h / 2) |
| 273 | + // = (x * r2) - (x * r2) * h / 2 |
| 274 | + UInt128 sx = prod_hi(x_reduced, r2); |
| 275 | + UInt128 h = prod_hi(sx, r2) << 2; |
| 276 | + UInt128 ds = static_cast<UInt128>(prod_hi(static_cast<Int128>(h), sx)); |
| 277 | + UInt128 v = (sx << 1) - ds; |
| 278 | + |
| 279 | + uint32_t nrst = rm == FE_TONEAREST; |
| 280 | + // The result lies within (-2,5) of true square root so we now |
| 281 | + // test that we can correctly round the result taking into account |
| 282 | + // the rounding mode |
| 283 | + // check the lowest 14 bits. |
| 284 | + int dd = (static_cast<int>(v) << 18) >> 18; |
| 285 | + |
| 286 | + if (LIBC_UNLIKELY(dd < 4 && dd >= -8)) { // can round correctly? |
| 287 | + // m is almost the final result it can be only 1 ulp off so we |
| 288 | + // just need to test both possibilities. We square it and |
| 289 | + // compare with the initial argument. |
| 290 | + UInt128 m = v >> 15; |
| 291 | + UInt128 m2 = m * m; |
| 292 | + Int128 t0, t1; |
| 293 | + // The difference of the squared result and the argument |
| 294 | + t0 = static_cast<Int128>(m2 - (x_reduced << 98)); |
| 295 | + if (t0 == 0) { |
| 296 | + // the square root is exact |
| 297 | + v = m << 15; |
| 298 | + } else { |
| 299 | + // Add +-1 ulp to m depend on the sign of the difference. Here |
| 300 | + // we do not need to square again since (m+1)^2 = m^2 + 2*m + |
| 301 | + // 1 so just need to add shifted m and 1. |
| 302 | + t1 = t0; |
| 303 | + Int128 sgn = t0 >> 127; // sign of the difference |
| 304 | + t1 -= (m << 1) ^ sgn; |
| 305 | + t1 += 1 + sgn; |
| 306 | + |
| 307 | + Int128 sgn1 = t1 >> 127; |
| 308 | + if (LIBC_UNLIKELY(sgn == sgn1)) { |
| 309 | + t0 = t1; |
| 310 | + v -= sgn << 15; |
| 311 | + t1 -= (m << 1) ^ sgn; |
| 312 | + t1 += 1 + sgn; |
| 313 | + } |
| 314 | + |
| 315 | + if (t1 == 0) { |
| 316 | + // 1 ulp offset brings again an exact root |
| 317 | + v = (m - (2 * sgn + 1)) << 15; |
| 318 | + } else { |
| 319 | + t1 += t0; |
| 320 | + Int128 side = t1 >> 127; // select what is closer m or m+-1 |
| 321 | + v &= ~UInt128(0) << 15; // wipe the fractional bits |
| 322 | + v -= ((sgn & side) | (~sgn & 1)) << (15 + side); |
| 323 | + v |= 1; // add sticky bit since we cannot have an exact mid-point |
| 324 | + // situation |
| 325 | + } |
| 326 | + } |
| 327 | + } |
| 328 | + |
| 329 | + unsigned frac = static_cast<unsigned>(v) & 0x7fff; // fractional part |
| 330 | + unsigned rnd; // round bit |
| 331 | + if (LIBC_LIKELY(nrst != 0)) { |
| 332 | + rnd = frac >> 14; // round to nearest tie to even |
| 333 | + } else if (rm == FE_UPWARD) { |
| 334 | + rnd = !!frac; // round up |
| 335 | + } else if (rm == FE_DOWNWARD) { |
| 336 | + rnd = 0; // round down |
| 337 | + } else { |
| 338 | + rnd = 0; // round to zero |
| 339 | + } |
| 340 | + |
| 341 | + v >>= 15; // position mantissa |
| 342 | + v += rnd; // round |
| 343 | + |
| 344 | + // // Set inexact flag only if square root is inexact |
| 345 | + // // TODO: We will have to raise FE_INEXACT most of the time, but this |
| 346 | + // // operation is very costly, especially in x86-64, since technically, it |
| 347 | + // // needs to synchronize both SSE and x87 flags. Need to investigate |
| 348 | + // // further to see how we can make this performant. |
| 349 | + // if(frac) fputil::raise_except_if_required(FE_INEXACT); |
| 350 | + |
| 351 | + v += static_cast<UInt128>(e2) << FPBits::FRACTION_LEN; // place exponent |
| 352 | + return cpp::bit_cast<float128>(v); |
18 | 353 | }
|
19 | 354 |
|
20 | 355 | } // namespace LIBC_NAMESPACE_DECL
|
0 commit comments