@@ -390,6 +390,12 @@ static cl::opt<bool> EnableEarlyExitVectorization(
390
390
cl::desc(
391
391
"Enable vectorization of early exit loops with uncountable exits."));
392
392
393
+ static cl::opt<unsigned> MaxNumPotentiallyFaultingPointers(
394
+ "max-num-faulting-pointers", cl::init(1), cl::Hidden,
395
+ cl::desc(
396
+ "The maximum number of potentially faulting pointers we permit when "
397
+ "vectorizing loops with uncountable exits."));
398
+
393
399
// Likelyhood of bypassing the vectorized loop because assumptions about SCEV
394
400
// variables not overflowing do not hold. See `emitSCEVChecks`.
395
401
static constexpr uint32_t SCEVCheckBypassWeights[] = {1, 127};
@@ -1582,6 +1588,22 @@ class LoopVectorizationCostModel {
1582
1588
ElementCount MaxSafeVF,
1583
1589
bool FoldTailByMasking);
1584
1590
1591
+ bool isSafeForAnyVectorWidth() const {
1592
+ return Legal->isSafeForAnyVectorWidth() &&
1593
+ (!Legal->hasUncountableEarlyExit() ||
1594
+ !Legal->getNumPotentiallyFaultingLoads());
1595
+ }
1596
+
1597
+ uint64_t getMaxSafeVectorWidthInBits() const {
1598
+ uint64_t MaxSafeVectorWidth = Legal->getMaxSafeVectorWidthInBits();
1599
+ // The legalizer bails out if getMinPageSize does not return a value.
1600
+ if (Legal->hasUncountableEarlyExit() &&
1601
+ Legal->getNumPotentiallyFaultingLoads())
1602
+ MaxSafeVectorWidth =
1603
+ std::min(MaxSafeVectorWidth, uint64_t(*TTI.getMinPageSize()) * 8);
1604
+ return MaxSafeVectorWidth;
1605
+ }
1606
+
1585
1607
/// Checks if scalable vectorization is supported and enabled. Caches the
1586
1608
/// result to avoid repeated debug dumps for repeated queries.
1587
1609
bool isScalableVectorizationAllowed();
@@ -2123,6 +2145,41 @@ class GeneratedRTChecks {
2123
2145
};
2124
2146
} // namespace
2125
2147
2148
+ std::optional<unsigned> getMaxVScale(const Function &F,
2149
+ const TargetTransformInfo &TTI) {
2150
+ if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2151
+ return MaxVScale;
2152
+
2153
+ if (F.hasFnAttribute(Attribute::VScaleRange))
2154
+ return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2155
+
2156
+ return std::nullopt;
2157
+ }
2158
+
2159
+ static void addPointerAlignmentChecks(
2160
+ const SmallVectorImpl<std::pair<LoadInst *, const SCEV *>> *Loads,
2161
+ Function *F, PredicatedScalarEvolution &PSE, TargetTransformInfo *TTI,
2162
+ ElementCount VF) {
2163
+ ScalarEvolution *SE = PSE.getSE();
2164
+ const DataLayout &DL = SE->getDataLayout();
2165
+ Type *PtrIntType = DL.getIntPtrType(SE->getContext());
2166
+
2167
+ const SCEV *Zero = SE->getZero(PtrIntType);
2168
+ const SCEV *ScevEC = SE->getElementCount(PtrIntType, VF);
2169
+
2170
+ for (auto Load : *Loads) {
2171
+ APInt EltSize(
2172
+ DL.getIndexTypeSizeInBits(Load.first->getPointerOperandType()),
2173
+ DL.getTypeStoreSize(Load.first->getType()).getFixedValue());
2174
+ const SCEV *Start = SE->getPtrToIntExpr(Load.second, PtrIntType);
2175
+ const SCEV *Align =
2176
+ SE->getMulExpr(ScevEC, SE->getConstant(EltSize),
2177
+ (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW));
2178
+ const SCEV *Rem = SE->getURemExpr(Start, Align);
2179
+ PSE.addPredicate(*(SE->getEqualPredicate(Rem, Zero)));
2180
+ }
2181
+ }
2182
+
2126
2183
static bool useActiveLaneMask(TailFoldingStyle Style) {
2127
2184
return Style == TailFoldingStyle::Data ||
2128
2185
Style == TailFoldingStyle::DataAndControlFlow ||
@@ -2292,17 +2349,6 @@ emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue,
2292
2349
llvm_unreachable("invalid enum");
2293
2350
}
2294
2351
2295
- std::optional<unsigned> getMaxVScale(const Function &F,
2296
- const TargetTransformInfo &TTI) {
2297
- if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2298
- return MaxVScale;
2299
-
2300
- if (F.hasFnAttribute(Attribute::VScaleRange))
2301
- return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2302
-
2303
- return std::nullopt;
2304
- }
2305
-
2306
2352
/// For the given VF and UF and maximum trip count computed for the loop, return
2307
2353
/// whether the induction variable might overflow in the vectorized loop. If not,
2308
2354
/// then we know a runtime overflow check always evaluates to false and can be
@@ -3899,13 +3945,22 @@ bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3899
3945
return false;
3900
3946
}
3901
3947
3902
- if (!Legal-> isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3948
+ if (!isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3903
3949
reportVectorizationInfo("The target does not provide maximum vscale value "
3904
3950
"for safe distance analysis.",
3905
3951
"ScalableVFUnfeasible", ORE, TheLoop);
3906
3952
return false;
3907
3953
}
3908
3954
3955
+ if (Legal->hasUncountableEarlyExit() &&
3956
+ Legal->getNumPotentiallyFaultingLoads() &&
3957
+ !TTI.isVScaleKnownToBeAPowerOfTwo()) {
3958
+ reportVectorizationInfo("Cannot vectorize potentially faulting early exit "
3959
+ "loop with scalable vectors.",
3960
+ "ScalableVFUnfeasible", ORE, TheLoop);
3961
+ return false;
3962
+ }
3963
+
3909
3964
IsScalableVectorizationAllowed = true;
3910
3965
return true;
3911
3966
}
@@ -3917,7 +3972,7 @@ LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3917
3972
3918
3973
auto MaxScalableVF = ElementCount::getScalable(
3919
3974
std::numeric_limits<ElementCount::ScalarTy>::max());
3920
- if (Legal-> isSafeForAnyVectorWidth())
3975
+ if (isSafeForAnyVectorWidth())
3921
3976
return MaxScalableVF;
3922
3977
3923
3978
std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
@@ -3944,11 +3999,11 @@ FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3944
3999
// the memory accesses that is most restrictive (involved in the smallest
3945
4000
// dependence distance).
3946
4001
unsigned MaxSafeElements =
3947
- llvm::bit_floor(Legal-> getMaxSafeVectorWidthInBits() / WidestType);
4002
+ llvm::bit_floor(getMaxSafeVectorWidthInBits() / WidestType);
3948
4003
3949
4004
auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
3950
4005
auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
3951
- if (!Legal-> isSafeForAnyVectorWidth())
4006
+ if (!isSafeForAnyVectorWidth())
3952
4007
this->MaxSafeElements = MaxSafeElements;
3953
4008
3954
4009
LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
@@ -10346,11 +10401,25 @@ bool LoopVectorizePass::processLoop(Loop *L) {
10346
10401
return false;
10347
10402
}
10348
10403
10349
- if (LVL.hasUncountableEarlyExit() && !EnableEarlyExitVectorization) {
10350
- reportVectorizationFailure("Auto-vectorization of loops with uncountable "
10351
- "early exit is not enabled",
10352
- "UncountableEarlyExitLoopsDisabled", ORE, L);
10353
- return false;
10404
+ if (LVL.hasUncountableEarlyExit()) {
10405
+ if (!EnableEarlyExitVectorization) {
10406
+ reportVectorizationFailure("Auto-vectorization of loops with uncountable "
10407
+ "early exit is not enabled",
10408
+ "UncountableEarlyExitLoopsDisabled", ORE, L);
10409
+ return false;
10410
+ }
10411
+
10412
+ unsigned NumPotentiallyFaultingPointers =
10413
+ LVL.getNumPotentiallyFaultingLoads();
10414
+ if (NumPotentiallyFaultingPointers > MaxNumPotentiallyFaultingPointers) {
10415
+ reportVectorizationFailure("Not worth vectorizing loop with uncountable "
10416
+ "early exit, due to number of potentially "
10417
+ "faulting loads",
10418
+ "UncountableEarlyExitMayFault", ORE, L);
10419
+ return false;
10420
+ } else if (NumPotentiallyFaultingPointers)
10421
+ LLVM_DEBUG(dbgs() << "LV: Need to version early-exit vector loop with "
10422
+ << "pointer alignment checks.\n");
10354
10423
}
10355
10424
10356
10425
if (LVL.hasStructVectorCall()) {
@@ -10508,8 +10577,19 @@ bool LoopVectorizePass::processLoop(Loop *L) {
10508
10577
unsigned SelectedIC = std::max(IC, UserIC);
10509
10578
// Optimistically generate runtime checks if they are needed. Drop them if
10510
10579
// they turn out to not be profitable.
10511
- if (VF.Width.isVector() || SelectedIC > 1)
10580
+ if (VF.Width.isVector() || SelectedIC > 1) {
10581
+ if (LVL.getNumPotentiallyFaultingLoads()) {
10582
+ assert(SelectedIC == 1 &&
10583
+ "Interleaving not supported for early exit loops and "
10584
+ "potentially faulting loads");
10585
+ assert(!CM.foldTailWithEVL() &&
10586
+ "Explicit vector length unsupported for early exit loops and "
10587
+ "potentially faulting loads");
10588
+ addPointerAlignmentChecks(LVL.getPotentiallyFaultingLoads(), F, PSE,
10589
+ TTI, VF.Width);
10590
+ }
10512
10591
Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10592
+ }
10513
10593
10514
10594
// Check if it is profitable to vectorize with runtime checks.
10515
10595
bool ForceVectorization =
0 commit comments