|
| 1 | +// RUN: mlir-opt %s --transform-interpreter --split-input-file -canonicalize | FileCheck %s |
| 2 | + |
| 3 | +// For pack op, we use lowerPadLikeWithInsertSlice = false to ensure no insert_slice is generated. |
| 4 | +// This allows linalg.transpose to be fused as a producer operation. Alternatively, without this attribute |
| 5 | +// insert_slice will be generated and fusion blocked. |
| 6 | + |
| 7 | +module { |
| 8 | + // CHECK-label: func @fuse_pack_as_producer |
| 9 | + // CHECK: scf.forall {{.*}} { |
| 10 | + // CHECK: linalg.transpose |
| 11 | + // CHECK: linalg.generic |
| 12 | + // CHECK: scf.forall.in_parallel |
| 13 | + // CHECK: } |
| 14 | + func.func @fuse_pack_as_producer(%src: tensor<128x256xf32>, %other: tensor<4x4x128x256xf32>) |
| 15 | + -> tensor<4x4x128x256xf32> { |
| 16 | + %dest = tensor.empty() : tensor<1x1x128x256xf32> |
| 17 | + %pack = tensor.pack %src inner_dims_pos = [0, 1] inner_tiles = [128, 256] |
| 18 | + into %dest : tensor<128x256xf32> -> tensor<1x1x128x256xf32> |
| 19 | + |
| 20 | + %out = tensor.empty() : tensor<4x4x128x256xf32> |
| 21 | + %res = linalg.generic |
| 22 | + {indexing_maps = [affine_map<(i, j, k, l) -> (0, 0, k, l)>, |
| 23 | + affine_map<(i, j, k, l) -> (i, j, k, l)>, |
| 24 | + affine_map<(i, j, k, l) -> (i, j, k, l)>], |
| 25 | + iterator_types = ["parallel", "parallel", "parallel", "parallel"]} |
| 26 | + ins(%pack, %other: tensor<1x1x128x256xf32>, tensor<4x4x128x256xf32>) |
| 27 | + outs(%out: tensor<4x4x128x256xf32>) { |
| 28 | + ^bb0(%pack_elem: f32, %other_elem: f32, %out_elem: f32): |
| 29 | + %r = arith.addf %pack_elem, %other_elem : f32 |
| 30 | + linalg.yield %r : f32 |
| 31 | + } -> tensor<4x4x128x256xf32> |
| 32 | + |
| 33 | + return %res : tensor<4x4x128x256xf32> |
| 34 | + } |
| 35 | + |
| 36 | + module attributes {transform.with_named_sequence} { |
| 37 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 38 | + // Find and lower pack operation. |
| 39 | + %pack = transform.structured.match ops{["tensor.pack"]} in %arg1 |
| 40 | + : (!transform.any_op) -> !transform.op<"tensor.pack"> |
| 41 | + %paded, %expanded, %transpose = transform.structured.lower_pack %pack {lowerPadLikeWithInsertSlice = false} |
| 42 | + : (!transform.op<"tensor.pack">) |
| 43 | + -> (!transform.op<"tensor.pad">, |
| 44 | + !transform.op<"tensor.expand_shape">, |
| 45 | + !transform.op<"linalg.transpose">) |
| 46 | + |
| 47 | + %root = transform.structured.match ops{["linalg.generic"]} in %arg1 |
| 48 | + : (!transform.any_op) -> !transform.any_op |
| 49 | + // Tile the lialg operation with parallel forall loop tiling [4, 4]. |
| 50 | + %tiled_op, %forall_op = transform.structured.tile_using_forall %root num_threads [4, 4] |
| 51 | + : (!transform.any_op) -> (!transform.any_op, !transform.any_op) |
| 52 | + |
| 53 | + // Fuse the transpose operation into the tiled loop. |
| 54 | + transform.structured.fuse_into_containing_op %transpose into %forall_op |
| 55 | + : (!transform.op<"linalg.transpose">, !transform.any_op) -> (!transform.any_op, !transform.any_op) |
| 56 | + transform.yield |
| 57 | + } |
| 58 | + } |
| 59 | +} |
| 60 | + |
| 61 | +// ----- |
| 62 | +// For unpack op, we use lowerUnpadLikeWithExtractSlice = false to ensure no extract_slice is generated. |
| 63 | +// This allows linalg.transpose to be fused as a consumer operation. Alternatively, without this attribute |
| 64 | +// extract_slice will be generated and fusion blocked. |
| 65 | + |
| 66 | +module { |
| 67 | + // CHECK-label: func @fuse_unpack_as_consumer |
| 68 | + // CHECK: scf.forall {{.*}} { |
| 69 | + // CHECK: linalg.generic |
| 70 | + // CHECK: linalg.transpose |
| 71 | + // CHECK: scf.forall.in_parallel |
| 72 | + // CHECK: } |
| 73 | + func.func @fuse_unpack_as_consumer(%src: tensor<4x4x128x256xf32>, %other: tensor<4x4x128x256xf32>) |
| 74 | + -> tensor<128x256xf32> { |
| 75 | + %out = tensor.empty() : tensor<1x1x128x256xf32> |
| 76 | + %res = linalg.generic |
| 77 | + {indexing_maps = [affine_map<(i, j, k, l) -> (i, j, k, l)>, |
| 78 | + affine_map<(i, j, k, l) -> (i, j, k, l)>, |
| 79 | + affine_map<(i, j, k, l) -> (0, 0, k, l)>], |
| 80 | + iterator_types = ["parallel", "parallel", "parallel", "parallel"]} |
| 81 | + ins(%src, %other: tensor<4x4x128x256xf32>, tensor<4x4x128x256xf32>) |
| 82 | + outs(%out: tensor<1x1x128x256xf32>) { |
| 83 | + ^bb0(%unpack_elem: f32, %other_elem: f32, %out_elem: f32): |
| 84 | + %r = arith.addf %unpack_elem, %other_elem : f32 |
| 85 | + linalg.yield %r : f32 |
| 86 | + } -> tensor<1x1x128x256xf32> |
| 87 | + |
| 88 | + %dest = tensor.empty() : tensor<128x256xf32> |
| 89 | + %unpack = tensor.unpack %res inner_dims_pos = [0, 1] inner_tiles = [128, 256] |
| 90 | + into %dest : tensor<1x1x128x256xf32> -> tensor<128x256xf32> |
| 91 | + |
| 92 | + return %unpack : tensor<128x256xf32> |
| 93 | + } |
| 94 | + |
| 95 | + module attributes {transform.with_named_sequence} { |
| 96 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 97 | + // Find and lower unpack operation. |
| 98 | + %unpack = transform.structured.match ops{["tensor.unpack"]} in %arg1 |
| 99 | + : (!transform.any_op) -> !transform.op<"tensor.unpack"> |
| 100 | + transform.structured.lower_unpack %unpack {lowerUnpadLikeWithExtractSlice = false} |
| 101 | + : (!transform.op<"tensor.unpack">) |
| 102 | + -> (!transform.op<"tensor.empty">, |
| 103 | + !transform.op<"linalg.transpose">, |
| 104 | + !transform.op<"tensor.collapse_shape">, |
| 105 | + !transform.op<"tensor.extract_slice">) |
| 106 | + |
| 107 | + %root = transform.structured.match ops{["linalg.generic"]} in %arg1 |
| 108 | + : (!transform.any_op) -> !transform.any_op |
| 109 | + // Tile the lialg operation with parallel forall loop tiling [4, 4]. |
| 110 | + %tiled_op, %forall_op = transform.structured.tile_using_forall %root num_threads [4, 4] |
| 111 | + : (!transform.any_op) -> (!transform.any_op, !transform.any_op) |
| 112 | + |
| 113 | + // Fuse the consumer operation into the tiled loop. |
| 114 | + %slice_op = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %forall_op |
| 115 | + : (!transform.any_op) -> !transform.op<"tensor.parallel_insert_slice"> |
| 116 | + transform.test.fuse_consumer %slice_op |
| 117 | + : (!transform.op<"tensor.parallel_insert_slice">) -> (!transform.any_op, !transform.any_op) |
| 118 | + transform.yield |
| 119 | + } |
| 120 | + } |
| 121 | +} |
0 commit comments