You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This patch fixes an issue seen in a large-scale deployment under heavy
incoming pkts where the aRFS flow wrongly matches a flow and reprograms the
NIC with wrong settings. That mis-steering causes RX-path latency spikes
and noisy neighbor effects when many connections collide on the same
hash (some of our production servers have 20-30K connections).
set_rps_cpu() calls ndo_rx_flow_steer() with flow_id that is calculated by
hashing the skb sized by the per rx-queue table size. This results in
multiple connections (even across different rx-queues) getting the same
hash value. The driver steer function modifies the wrong flow to use this
rx-queue, e.g.: Flow#1 is first added:
Flow#1: <ip1, port1, ip2, port2>, Hash 'h', q#10
Later when a new flow needs to be added:
Flow#2: <ip3, port3, ip4, port4>, Hash 'h', q#20
The driver finds the hash 'h' from Flow#1 and updates it to use q#20. This
results in both flows getting un-optimized - packets for Flow#1 goes to
q#20, and then reprogrammed back to q#10 later and so on; and Flow kernel-patches#2
programming is never done as Flow#1 is matched first for all misses. Many
flows may wrongly share the same hash and reprogram rules of the original
flow each with their own q#.
Tested on two 144-core servers with 16K netperf sessions for 180s. Netperf
clients are pinned to cores 0-71 sequentially (so that wrong packets on q#s
72-143 can be measured). IRQs are set 1:1 for queues -> CPUs, enable XPS,
enable aRFS (global value is 144 * rps_flow_cnt).
Test notes about results from ice_rx_flow_steer():
---------------------------------------------------
1. "Skip:" counter increments here:
if (fltr_info->q_index == rxq_idx ||
arfs_entry->fltr_state != ICE_ARFS_ACTIVE)
goto out;
2. "Add:" counter increments here:
ret = arfs_entry->fltr_info.fltr_id;
INIT_HLIST_NODE(&arfs_entry->list_entry);
3. "Update:" counter increments here:
/* update the queue to forward to on an already existing flow */
Runtime comparison: original code vs with the patch for different
rps_flow_cnt values.
+-------------------------------+--------------+--------------+
| rps_flow_cnt | 512 | 2048 |
+-------------------------------+--------------+--------------+
| Ratio of Pkts on Good:Bad q's | 214 vs 822K | 1.1M vs 980K |
| Avoid wrong aRFS programming | 0 vs 310K | 0 vs 30K |
| CPU User | 216 vs 183 | 216 vs 206 |
| CPU System | 1441 vs 1171 | 1447 vs 1320 |
| CPU Softirq | 1245 vs 920 | 1238 vs 961 |
| CPU Total | 29 vs 22.7 | 29 vs 24.9 |
| aRFS Update | 533K vs 59 | 521K vs 32 |
| aRFS Skip | 82M vs 77M | 7.2M vs 4.5M |
+-------------------------------+--------------+--------------+
A separate TCP_STREAM and TCP_RR with 1,4,8,16,64,128,256,512 connections
showed no performance degradation.
Some points on the patch/aRFS behavior:
1. Enabling full tuple matching ensures flows are always correctly matched,
even with smaller hash sizes.
2. 5-6% drop in CPU utilization as the packets arrive at the correct CPUs
and fewer calls to driver for programming on misses.
3. Larger hash tables reduces mis-steering due to more unique flow hashes,
but still has clashes. However, with larger per-device rps_flow_cnt, old
flows take more time to expire and new aRFS flows cannot be added if h/w
limits are reached (rps_may_expire_flow() succeeds when 10*rps_flow_cnt
pkts have been processed by this cpu that are not part of the flow).
Changes since v1:
- Added "Fixes:" tag and documented return values.
- Added @ for function parameters.
- Updated subject line to denote target tree (net)
Fixes: 28bf267 ("ice: Implement aRFS")
Signed-off-by: Krishna Kumar <[email protected]>
Signed-off-by: NipaLocal <nipa@local>
0 commit comments