Skip to content

Commit b26242b

Browse files
feat(AlgebraicGeometry/Morphisms/Flat): add a simple lemma (#30237)
This PR introduces the following simple lemma: - `AlgebraicGeometry.Flat.flat_and_surjective_iff_faithfullyFlat_of_isAffine`: A morphism between affine schemes is flat and surjective if and only if the corresponding map on global sections is faithfully flat. Co-authored-by: Christian Merten Co-authored-by: yonggyuchoimath <[email protected]>
1 parent f6f9225 commit b26242b

File tree

1 file changed

+8
-0
lines changed

1 file changed

+8
-0
lines changed

Mathlib/AlgebraicGeometry/Morphisms/Flat.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -133,6 +133,14 @@ lemma epi_of_flat_of_surjective (f : X ⟶ Y) [Flat f] [Surjective f] : Epi f :=
133133
(Flat.stalkMap f x) (f.toLRSHom.prop x)
134134
exact ‹RingHom.FaithfullyFlat _›.injective
135135

136+
lemma flat_and_surjective_iff_faithfullyFlat_of_isAffine [IsAffine X] [IsAffine Y] :
137+
Flat f ∧ Surjective f ↔ f.appTop.hom.FaithfullyFlat := by
138+
rw [RingHom.FaithfullyFlat.iff_flat_and_comap_surjective,
139+
MorphismProperty.arrow_mk_iso_iff @Surjective (arrowIsoSpecΓOfIsAffine f),
140+
MorphismProperty.arrow_mk_iso_iff @Flat (arrowIsoSpecΓOfIsAffine f),
141+
← HasRingHomProperty.Spec_iff (P := @Flat), surjective_iff]
142+
rfl
143+
136144
end Flat
137145

138146
end AlgebraicGeometry

0 commit comments

Comments
 (0)