|
1 |
| -from ltypes import i32, i64 |
| 1 | +from ltypes import i32, i64, f64 |
| 2 | +from math import pi, sin, cos |
2 | 3 |
|
3 | 4 | def test_dict():
|
4 |
| - rollnumber2cpi: dict[tuple[i32, i32], i64] = {} |
| 5 | + terms2poly: dict[tuple[i32, i32], i64] = {} |
| 6 | + rtheta2coords: dict[tuple[i64, i64], tuple[f64, f64]] = {} |
5 | 7 | i: i32
|
| 8 | + n: i64 |
6 | 9 | size: i32 = 7000
|
7 | 10 | size1: i32
|
8 |
| - t: tuple[i32, i32] |
| 11 | + theta: f64 |
| 12 | + r: f64 |
| 13 | + coords: tuple[f64, f64] |
| 14 | + eps: f64 = 1e-12 |
9 | 15 |
|
| 16 | + n = 0 |
10 | 17 | for i in range(1000, 1000 + size, 7):
|
11 |
| - rollnumber2cpi[(i, i*i)] = int(i + i*i) |
| 18 | + terms2poly[(i, i*i)] = int(i + i*i) |
| 19 | + |
| 20 | + theta = float(n) * pi |
| 21 | + r = float(i) |
| 22 | + rtheta2coords[(int(i), n)] = (r * sin(theta), r * cos(theta)) |
| 23 | + |
| 24 | + n += int(1) |
12 | 25 |
|
13 | 26 | size1 = size/7
|
| 27 | + n = 0 |
14 | 28 | for i in range(1000, 1000 + size//2, 7):
|
15 |
| - assert rollnumber2cpi.pop((i, i*i)) == int(i + i*i) |
| 29 | + assert terms2poly.pop((i, i*i)) == int(i + i*i) |
| 30 | + |
| 31 | + theta = float(n) * pi |
| 32 | + r = float(i) |
| 33 | + coords = rtheta2coords.pop((int(i), n)) |
| 34 | + assert abs(coords[0] - r * sin(theta)) <= eps |
| 35 | + assert abs(coords[1] - r * cos(theta)) <= eps |
| 36 | + |
16 | 37 | size1 = size1 - 1
|
17 |
| - assert len(rollnumber2cpi) == size1 |
| 38 | + assert len(terms2poly) == size1 |
| 39 | + n += int(1) |
18 | 40 |
|
| 41 | + n = 0 |
19 | 42 | for i in range(1000, 1000 + size//2, 7):
|
20 |
| - rollnumber2cpi[(i, i*i)] = int(1 + 2*i + i*i) |
| 43 | + terms2poly[(i, i*i)] = int(1 + 2*i + i*i) |
| 44 | + |
| 45 | + theta = float(n) * pi |
| 46 | + r = float(i) |
| 47 | + rtheta2coords[(int(i), n)] = (r * cos(theta), r * sin(theta)) |
21 | 48 |
|
| 49 | + n += int(1) |
| 50 | + |
| 51 | + n = 0 |
22 | 52 | for i in range(1000, 1000 + size//2, 7):
|
23 |
| - assert rollnumber2cpi[(i, i*i)] == (i + 1)*(i + 1) |
| 53 | + assert terms2poly[(i, i*i)] == (i + 1)*(i + 1) |
| 54 | + |
| 55 | + theta = float(n) * pi |
| 56 | + r = float(i) |
| 57 | + assert abs(rtheta2coords[(int(i), n)][0] - r * cos(theta)) <= eps |
| 58 | + assert abs(rtheta2coords[(int(i), n)][1] - r * sin(theta)) <= eps |
| 59 | + |
| 60 | + n += int(1) |
24 | 61 |
|
| 62 | + n = 0 |
25 | 63 | for i in range(1000, 1000 + size, 7):
|
26 |
| - rollnumber2cpi[(i, i*i)] = int(1 + 2*i + i*i) |
| 64 | + terms2poly[(i, i*i)] = int(1 + 2*i + i*i) |
27 | 65 |
|
| 66 | + theta = float(n) * pi |
| 67 | + r = float(i) |
| 68 | + rtheta2coords[(int(i), n)] = (r * cos(theta), r * sin(theta)) |
| 69 | + n += int(1) |
| 70 | + |
| 71 | + n = 0 |
28 | 72 | for i in range(1000, 1000 + size, 7):
|
29 |
| - assert rollnumber2cpi[(i, i*i)] == (i + 1)*(i + 1) |
| 73 | + assert terms2poly[(i, i*i)] == (i + 1)*(i + 1) |
| 74 | + |
| 75 | + theta = float(n) * pi |
| 76 | + r = float(i) |
| 77 | + assert abs(r**2 - rtheta2coords[(int(i), n)][0]**2 - r**2 * sin(theta)**2) <= eps |
| 78 | + n += int(1) |
30 | 79 |
|
31 | 80 | test_dict()
|
0 commit comments