diff --git a/tests/schedulers/test_scheduler_sasolver.py b/tests/schedulers/test_scheduler_sasolver.py new file mode 100644 index 000000000000..42b4b24ab974 --- /dev/null +++ b/tests/schedulers/test_scheduler_sasolver.py @@ -0,0 +1,166 @@ +import torch + +from diffusers import SASolverScheduler +from diffusers.utils.testing_utils import require_torchsde, torch_device + +from .test_schedulers import SchedulerCommonTest + + +@require_torchsde +class SASolverSchedulerTest(SchedulerCommonTest): + scheduler_classes = (SASolverScheduler,) + num_inference_steps = 10 + + def get_scheduler_config(self, **kwargs): + config = { + "num_train_timesteps": 1100, + "beta_start": 0.0001, + "beta_end": 0.02, + "beta_schedule": "linear", + } + + config.update(**kwargs) + return config + + def test_timesteps(self): + for timesteps in [10, 50, 100, 1000]: + self.check_over_configs(num_train_timesteps=timesteps) + + def test_betas(self): + for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): + self.check_over_configs(beta_start=beta_start, beta_end=beta_end) + + def test_schedules(self): + for schedule in ["linear", "scaled_linear"]: + self.check_over_configs(beta_schedule=schedule) + + def test_prediction_type(self): + for prediction_type in ["epsilon", "v_prediction"]: + self.check_over_configs(prediction_type=prediction_type) + + def test_full_loop_no_noise(self): + scheduler_class = self.scheduler_classes[0] + scheduler_config = self.get_scheduler_config() + scheduler = scheduler_class(**scheduler_config) + + scheduler.set_timesteps(self.num_inference_steps) + + model = self.dummy_model() + sample = self.dummy_sample_deter * scheduler.init_noise_sigma + sample = sample.to(torch_device) + + for i, t in enumerate(scheduler.timesteps): + sample = scheduler.scale_model_input(sample, t) + + model_output = model(sample, t) + + output = scheduler.step(model_output, t, sample) + sample = output.prev_sample + + result_sum = torch.sum(torch.abs(sample)) + result_mean = torch.mean(torch.abs(sample)) + + if torch_device in ["mps"]: + assert abs(result_sum.item() - 167.47821044921875) < 1e-2 + assert abs(result_mean.item() - 0.2178705964565277) < 1e-3 + elif torch_device in ["cuda"]: + assert abs(result_sum.item() - 171.59352111816406) < 1e-2 + assert abs(result_mean.item() - 0.22342906892299652) < 1e-3 + else: + assert abs(result_sum.item() - 162.52383422851562) < 1e-2 + assert abs(result_mean.item() - 0.211619570851326) < 1e-3 + + def test_full_loop_with_v_prediction(self): + scheduler_class = self.scheduler_classes[0] + scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") + scheduler = scheduler_class(**scheduler_config) + + scheduler.set_timesteps(self.num_inference_steps) + + model = self.dummy_model() + sample = self.dummy_sample_deter * scheduler.init_noise_sigma + sample = sample.to(torch_device) + + for i, t in enumerate(scheduler.timesteps): + sample = scheduler.scale_model_input(sample, t) + + model_output = model(sample, t) + + output = scheduler.step(model_output, t, sample) + sample = output.prev_sample + + result_sum = torch.sum(torch.abs(sample)) + result_mean = torch.mean(torch.abs(sample)) + + if torch_device in ["mps"]: + assert abs(result_sum.item() - 124.77149200439453) < 1e-2 + assert abs(result_mean.item() - 0.16226289014816284) < 1e-3 + elif torch_device in ["cuda"]: + assert abs(result_sum.item() - 128.1663360595703) < 1e-2 + assert abs(result_mean.item() - 0.16688326001167297) < 1e-3 + else: + assert abs(result_sum.item() - 119.8487548828125) < 1e-2 + assert abs(result_mean.item() - 0.1560530662536621) < 1e-3 + + def test_full_loop_device(self): + scheduler_class = self.scheduler_classes[0] + scheduler_config = self.get_scheduler_config() + scheduler = scheduler_class(**scheduler_config) + + scheduler.set_timesteps(self.num_inference_steps, device=torch_device) + + model = self.dummy_model() + sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma + + for t in scheduler.timesteps: + sample = scheduler.scale_model_input(sample, t) + + model_output = model(sample, t) + + output = scheduler.step(model_output, t, sample) + sample = output.prev_sample + + result_sum = torch.sum(torch.abs(sample)) + result_mean = torch.mean(torch.abs(sample)) + + if torch_device in ["mps"]: + assert abs(result_sum.item() - 167.46957397460938) < 1e-2 + assert abs(result_mean.item() - 0.21805934607982635) < 1e-3 + elif torch_device in ["cuda"]: + assert abs(result_sum.item() - 171.59353637695312) < 1e-2 + assert abs(result_mean.item() - 0.22342908382415771) < 1e-3 + else: + assert abs(result_sum.item() - 162.52383422851562) < 1e-2 + assert abs(result_mean.item() - 0.211619570851326) < 1e-3 + + def test_full_loop_device_karras_sigmas(self): + scheduler_class = self.scheduler_classes[0] + scheduler_config = self.get_scheduler_config() + scheduler = scheduler_class(**scheduler_config, use_karras_sigmas=True) + + scheduler.set_timesteps(self.num_inference_steps, device=torch_device) + + model = self.dummy_model() + sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma + sample = sample.to(torch_device) + + for t in scheduler.timesteps: + sample = scheduler.scale_model_input(sample, t) + + model_output = model(sample, t) + + output = scheduler.step(model_output, t, sample) + sample = output.prev_sample + + result_sum = torch.sum(torch.abs(sample)) + result_mean = torch.mean(torch.abs(sample)) + + if torch_device in ["mps"]: + assert abs(result_sum.item() - 176.66974135742188) < 1e-2 + assert abs(result_mean.item() - 0.23003872730981811) < 1e-2 + elif torch_device in ["cuda"]: + assert abs(result_sum.item() - 177.63653564453125) < 1e-2 + assert abs(result_mean.item() - 0.23003872730981811) < 1e-2 + else: + assert abs(result_sum.item() - 170.3135223388672) < 1e-2 + assert abs(result_mean.item() - 0.23003872730981811) < 1e-2