
Type ::= FunType

 | TypeLambda

 | InfixType

FunType ::= FunTypeArgs ‘=>’ Type

 | TypeLambdaParams '=>' Type

TypeLambda ::= TypeLambdaParams ‘=>>’ Type

InfixType ::= RefinedType

 | RefinedTypeOrWildcard id [nl]

RefinedTypeOrWildcard {id [nl] RefinedTypeOrWildcard}

RefinedType ::= AnnotType {[nl] Refinement}

AnnotType ::= SimpleType {Annotation}

SimpleType ::= SimpleLiteral

 | SimpleType1

SimpleType1 ::= id

 | Singleton ‘.’ id

 | Singleton ‘.’ ‘type’

 | ‘(’ TypesOrWildcards ‘)’

 | Refinement

 | SimpleType1 TypeArgs

 | SimpleType1 ‘#’ id

Singleton ::= SimpleRef

 | SimpleLiteral

 | Singleton ‘.’ id

SimpleRef ::= id

 | [id ‘.’] ‘this’

 | [id ‘.’] ‘super’ [‘[’ id ‘]’] ‘.’ id

ParamType ::= [‘=>’] ParamValueType

ParamValueType ::= ParamValueType [‘*’]

TypeArgs ::= ‘[’ TypesOrWildcards ‘]’

Refinement ::= :<<< [RefineDcl] {semi [RefineDcl]} >>>

FunTypeArgs ::= InfixType

 | ‘(’ [FunArgTypes] ‘)’

 | FunParamClause

FunArgTypes ::= FunArgType { ‘,’ FunArgType }

FunArgType ::= Type

 | ‘=>’ Type

FunParamClause ::= ‘(’ TypedFunParam {‘,’ TypedFunParam } ‘)’

TypedFunParam ::= id ‘:’ Type

TypeLambdaParams ::= ‘[’ TypeLambdaParam {‘,’ TypeLambdaParam} ‘]’

TypeLambdaParam ::= {Annotation} (id | ‘_’) [TypeParamClause]

Chapter 3

Types

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

1 of 33 6/7/23, 10:36

TypeLambdaParam ::= {Annotation} (id | ‘_’) [TypeParamClause]

TypeBounds

TypeParamClause ::= ‘[’ VariantTypeParam {‘,’ VariantTypeParam}

‘]’

VariantTypeParam ::= {Annotation} [‘+’ | ‘-’] (id | ‘_’)

[TypeParamClause] TypeBounds

RefineDcl ::= ‘val’ ValDcl

 | ‘def’ DefDcl

 | ‘type’ {nl} TypeDcl

TypeBounds ::= [‘>:’ Type] [‘<:’ Type]

TypesOrWildcards ::= TypeOrWildcard {‘,’ TypeOrWildcard}

TypeOrWildcard ::= Type

 | WildcardType

RefinedTypeOrWildcard ::= RefinedType

 | WildcardType

WildcardType ::= (‘?‘ | ‘_‘) TypeBounds

The above grammer describes the concrete syntax of types that can be written in user code. Semantic

operations on types in the Scala type system are better defined in terms of internal types, which are

desugared from the concrete type syntax.

The following abstract grammar defines the shape of internal types. In this specification, unless

otherwise noted, "types" refer to internal types. Internal types abstract away irrelevant details such as

precedence and grouping, and contain shapes of types that cannot be directly expressed using the

concrete syntax. They also contain simplified, decomposed shapes for complex concrete syntax

types, such as refined types.

Type ::= ‘AnyKind‘

 | ‘Nothing‘

 | TypeLambda

 | DesignatorType

 | ParameterizedType

 | ThisType

 | SuperType

 | LiteralType

 | ByNameType

 | AnnotatedType

 | RefinedType

 | RecursiveType

 | RecursiveThis

 | UnionType

 | IntersectionType

3.1 Internal Types

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

2 of 33 6/7/23, 10:36

 | SkolemType

TypeLambda ::= ‘[‘ TypeParams ‘]‘ ‘=>>‘ Type

TypeParams ::= TypeParam {‘,‘ TypeParam}

TypeParam ::= ParamVariance id TypeBounds

ParamVariance ::= ε | ‘+‘ | ‘-‘

DesignatorType ::= Prefix ‘.‘ id

Prefix ::= Type

 | PackageRef

 | ε

PackageRef ::= id {‘.‘ id}

ParameterizedType ::= Type ‘[‘ TypeArgs ‘]‘

TypeArgs ::= TypeArg {‘,‘ TypeArg}

TypeArg ::= Type

 | WilcardTypeArg

WildcardTypeArg ::= ‘?‘ TypeBounds

ThisType ::= classid ‘.‘ ‘this‘

SuperType ::= classid ‘.‘ ‘super‘ ‘[‘ classid ‘]‘

LiteralType ::= SimpleLiteral

ByNameType ::= ‘=>‘ Type

AnnotatedType ::= Type Annotation

RefinedType ::= Type ‘{‘ Refinement ‘}‘

Refinement ::= ‘type‘ id TypeAliasOrBounds

 | ‘def‘ id ‘:‘ TypeOrMethodic

 | ‘val‘ id ‘:‘ Type

RecursiveType ::= ‘{‘ recid ‘=>‘ Type ‘}‘

RecursiveThis ::= recid ‘.‘ ‘this‘

UnionType ::= Type ‘｜‘ Type

IntersectionType ::= Type ‘＆‘ Type

SkolemType ::= ‘∃‘ skolemid ‘:‘ Type

TypeOrMethodic ::= Type

 | MethodicType

MethodicType ::= MethodType

 | PolyType

MethodType ::= ‘(‘ MethodTypeParams ‘)‘ TypeOrMethodic

MethodTypeParams ::= ε

 | MethodTypeParam {‘,‘ MethodTypeParam}

MethodTypeParam ::= id ‘:‘ Type

PolyType ::= ‘[‘ PolyTypeParams ‘]‘ TypeOrMethodic

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

3 of 33 6/7/23, 10:36

PolyType ::= ‘[‘ PolyTypeParams ‘]‘ TypeOrMethodic

PolyTypeParams ::= PolyTypeParam {‘,‘ PolyTypeParam}

PolyTypeParam ::= ‘id‘ TypeBounds

TypeAliasOrBounds ::= TypeAlias

 | TypeBounds

TypeAlias ::= ‘=‘ Type

TypeBounds ::= ‘<:‘ Type ‘>:‘ Type

Concrete types are recursively translated, or desugared, into internal types. Most shapes of concrete

types have a one-to-one translation to shapes of internal types. We elaborate hereafter on the

translation of the other ones.

InfixType ::= CompoundType {id [nl] CompoundType}

A concrete infix type op consists of an infix operator op which gets applied to two type operands

 and . The type is translated to the internal type application op . The infix operator op

may be an arbitrary identifier.

Type operators follow the same precedence and associativity as term operators. For example,

A + B * C parses as A + (B * C) and A | B & C parses as A | (B & C). Type operators ending in a

colon ‘:’ are right-associative; all other operators are left-associative.

In a sequence of consecutive type infix operations , all operators

must have the same associativity. If they are all left-associative, the sequence is interpreted as

, otherwise it is interpreted as .

The type operators | and & are not really special. Nevertheless, unless shadowed, they resolve to

scala.| and scala.&, which represent union and intersection types, respectively.

Type ::= FunTypeArgs ‘=>’ Type

FunTypeArgs ::= InfixType

 | ‘(’ [FunArgTypes] ‘)’

 | FunParamClause

FunArgTypes ::= FunArgType { ‘,’ FunArgType }

FunArgType ::= Type

 | ‘=>’ Type

FunParamClause ::= ‘(’ TypedFunParam {‘,’ TypedFunParam } ‘)’

TypedFunParam ::= id ‘:’ Type

3.1.1 Translation of Concrete Types into Internal Types

3.1.2 Infix Types

T1 T2

T1 T2 [T , T]1 2

t op t op ... op t0 1 2 n n op , ..., op1 n

(...(t op t)op ...)op t0 1 1 2 n n t op (t op (...op t)...)0 1 1 2 n n

3.1.3 Function Types

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

4 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#prefix-infix-and-postfix-operations
http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#prefix-infix-and-postfix-operations
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#union-and-intersection-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#union-and-intersection-types

TypedFunParam ::= id ‘:’ Type

The concrete function type represents the set of function values that take

arguments of types and yield results of type . The case of exactly one argument type

 is a shorthand for . An argument type of the form represents a call-by-name

parameter of type .

Function types associate to the right, e.g. is the same as .

Function types are covariant in their result type and contravariant in their argument types.

Function types translate into internal class types that define an apply method. Specifically, the -ary

function type translates to the internal class type

scala.Function [, ..., ,]. In particular is a shorthand for class type

scala.Function [].

Such class types behave as if they were instances of the following trait:

trait Function [- , ..., - , +]:

def apply(: , ..., :):

Their exact supertype and implementation can be consulted in the function classes section of the

standard library page in this document.

Dependent function types are function types whose parameters are named and can referred to in

result types. In the concrete type , can refer to the parameters ,

notably to form path-dependent types. It translates to the internal refined type

scala.Function [, ..., ,] {

def apply(: , ..., :):

}

where is the least super type of that does not mention any of the .

Polymorphic function types are function types that take type arguments. Their result type must be a

function type. In the concrete type

, the types and can refer to the type parameters . It translates to the internal refined type

scala.PolyFunction {

def apply[](: , ..., :):

}

(T , ..., T) ⇒1 n R

T , ..., T n1 R

T ⇒ R (T) ⇒ R ⇒ T

T

S ⇒ T ⇒ R S ⇒ (T ⇒ R)

n

(T , ..., T) ⇒1 n R

n T1 Tn R () ⇒ R

0 R

n T1 Tn R

x1 T1 xn Tn R

(x :1 T , ..., x :1 n T) ⇒n R R xi

n T1 Tn S

x1 T1 xn Tn R

S R xi

[a >1 : L <1 : H , ..., a >1 n : L <1 : H] =1 > (T , ..., T) =1 m >

R Tj R ai

a >1 : L <1 : H , ..., a >1 n : L <1 : H1 x1 T1 xn Tn R

3.1.4 Concrete Refined Types

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

5 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/04-basic-declarations-and-definitions.html#by-name-parameters
http://0.0.0.0:4000/files/archive/spec/2.13/04-basic-declarations-and-definitions.html#by-name-parameters
http://0.0.0.0:4000/files/archive/spec/2.13/04-basic-declarations-and-definitions.html#by-name-parameters
http://0.0.0.0:4000/files/archive/spec/2.13/04-basic-declarations-and-definitions.html#by-name-parameters
http://0.0.0.0:4000/files/archive/spec/2.13/04-basic-declarations-and-definitions.md#variance-annotations
http://0.0.0.0:4000/files/archive/spec/2.13/04-basic-declarations-and-definitions.md#variance-annotations
http://0.0.0.0:4000/files/archive/spec/2.13/04-basic-declarations-and-definitions.md#variance-annotations
http://0.0.0.0:4000/files/archive/spec/2.13/04-basic-declarations-and-definitions.md#variance-annotations
http://0.0.0.0:4000/files/archive/spec/2.13/12-the-scala-standard-library.md#the-function-classes
http://0.0.0.0:4000/files/archive/spec/2.13/12-the-scala-standard-library.md#the-function-classes
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#refined-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#refined-types

RefinedType ::= AnnotType {[nl] Refinement}

SimpleType1 ::= ...

 | Refinement

Refinement ::= :<<< [RefineDcl] {semi [RefineDcl]} >>>

RefineDcl ::= ‘val’ ValDcl

 | ‘def’ DefDcl

 | ‘type’ {nl} TypeDcl

In the concrete syntax of types, refinements can contain several refined declarations. Moreover, the

refined declarations can refer to each other as well as to members of the parent type, i.e., they have

access to this.

In the internal types, each refinement defines exactly one refined declaration, and references to this

must be made explicit in a recursive type.

The conversion from the concrete syntax to the abstract syntax works as follows:

. Create a fresh recursive this name .

. Replace every implicit or explicit reference to this in the refinement declarations by .

. Create nested refined types, one for every refined declaration.

. Unless was never actually used, wrap the result in a recursive type { => }.

TypeLambda ::= TypeLambdaParams ‘=>>’ Type

TypeLambdaParams ::= ‘[’ TypeLambdaParam {‘,’ TypeLambdaParam} ‘]’

TypeLambdaParam ::= {Annotation} (id | ‘_’) [TypeParamClause]

TypeBounds

TypeParamClause ::= ‘[’ VariantTypeParam {‘,’ VariantTypeParam}

‘]’

VariantTypeParam ::= {Annotation} [‘+’ | ‘-’] (id | ‘_’)

[TypeParamClause] TypeBounds

At the top level of concrete type lambda parameters, variance annotations are not allowed. However,

in internal types, all type lambda parameters have explicit variance annotations.

When translating a concrete type lambda into an internal one, the variance of each type parameter is

inferred from its usages in the body of the type lambda.

α

α

α α ...

3.1.5 Concrete Type Lambdas

3.2 Definitions

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

6 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#refined-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#refined-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#recursive-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#recursive-types

From here onwards, we refer to internal types by default.

The Scala type system is fundamentally higher-kinded. Types are either proper types, type constructors

or poly-kinded types.

• Proper types are the types of terms.

• Type constructors are type-level functions from types to types.

• Poly-kinded types can take various kinds.

All types live in a single lattice with respect to a conformance relationship . The top type is AnyKind

and the bottom type is Nothing: all types conform to AnyKind, and Nothing conforms to all types.

They can be referred to as the standard library entities scala.AnyKind and scala.Nothing,

respectively.

Types can be concrete or abstract. An abstract type always has lower and upper bounds and

such that and . A concrete type is considered to have itself as both lower and

upper bound.

The kind of a type is indicated by its (transitive) upper bound:

• A type scala.Any is a proper type.

• A type where is a type lambda (of the form

[, ...,] =>>) is a type constructor.

• Other types are poly-kinded; they are neither proper types nor type constructors.

As a consequece, AnyKind itself is poly-kinded. Nothing is universally-kinded: it has all kinds at the

same time, since it conforms to all types.

With this representation, it is rarely necessary to explicitly talk about the kinds of types. Usually, the

kinds of types are implicit through their bounds.

Another way to look at it is that type bounds are kinds. They represent sets of types:

denotes the set of types such that and . A set of types can be seen as a type of

types, i.e., as a kind.

Type bounds are formally always of the form . By convention, we can omit either of both

bounds in writing.

3.2.1 Kinds

<:

T L H

L >: T T <: H T

T <:

T <: K K

±a >1 : L <1 : H1 ±a >n : L <n : Hn U

>: L <: H

T L <: T T <: H

Conventions

>: L <: H

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

7 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#conformance
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#conformance
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#conformance
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-lambdas
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-lambdas
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-lambdas

• When omitted, the lower bound is Nothing.

• When omitted, the higher bound is Any (not AnyKind).

These conventions correspond to the defaults in the concrete syntax.

Proper types are also called value types, as they represent sets of values.

Stable types are value types that contain exactly one non-null value. Stable types can be used as

prefixes in named designator types. The stable types are

• designator types referencing a stable term,

• this types,

• super types,

• literal types,

• recursive this types, and

• skolem types.

Every stable type is concrete and has an underlying type such that .

To each type constructor corresponds an inferred type parameter clause which is computed as

follows:

• For a type lambda, its type parameter clause (including variance annotations).

• For a polymorphic class type, the type parameter clause of the referenced class definition.

• For a non-class type designator, the inferred clause of its upper bound.

A type definition represents the right-hand-side of a type declaration or the bounds of a type

parameter. It is either:

• a type alias of the form , or

• an abstract type definition with bounds .

All type definitions have a lower bound and an upper bound , which are types. For type aliases,

L

H

3.2.2 Proper Types

T U T <: U

3.2.3 Type Constructors

3.2.4 Type Definitions

D

= U

>: L <: H

L H

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

8 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#designator-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#designator-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-lambdas
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-lambdas
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-designators
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-designators
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-designators
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-designators

All type definitions have a lower bound and an upper bound , which are types. For type aliases,L H

.

The type definition of a type parameter is never a type alias.

TypeLambda ::= ‘[‘ TypeParams ‘]‘ ‘=>>‘ Type

TypeParams ::= TypeParam {‘,‘ TypeParam}

TypeParam ::= ParamVariance id TypeBounds

ParamVariance ::= ε | ‘+‘ | ‘-‘

A type lambda of the form [, ...,] =>> is a direct

representation of a type constructor with type parameters. When applied to type arguments that

conform to the specified bounds, it produces another type . Type lambdas are always concrete

types.

All type constructors conform to some type lambda.

The type bounds of the parameters of a type lambda are in contravariant position, while its result

type is in covariant position. If some type

constructor [, ...,] =>> , then 's th type parameter

bounds contain the bounds , and its result type conforms to .

Note: the concrete syntax of type lambdas does not allow to specify variances for type parameters.

Instead, variances are inferred from the body of the lambda to be as general as possible.

type Lst = [T] =>> List[T] // T is inferred to be covariant with bounds

>: Nothing <: Any

type Fn = [A <: Seq[?], B] =>> (A => B) // A is inferred to be

contravariant, B covariant

val x: Lst[Int] = List(1) // ok, Lst[Int] expands to List[Int]

val f: Fn[List[Int], Int] = (x: List[Int]) => x.head // ok

val g: Fn[Int, Int] = (x: Int) => x // error: Int does not conform to the

bound Seq[?]

def liftPair[F <: [T] =>> Any](f: F[Int]): Any = f

liftPair[Lst](List(1)) // ok, Lst <: ([T] =>> Any)

L = H = U

3.3 Types

3.3.1 Type Lambdas

±a >1 : L <1 : H1 ±a >n : L <n : Hn U

n n

U

T <: ±a >1 : L <1 : H1 ±a >n : L <n : Hn U T i

>: L <i : Hi U

Example

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

9 of 33 6/7/23, 10:36

3.3.2 Designator Types

DesignatorType ::= Prefix ‘.‘ id

Prefix ::= Type

 | PackageRef

 | ε

PackageRef ::= id {‘.‘ id}

A designator type (or designator for short) is a reference to a definition. Term designators refer to

term definitions, while type designators refer to type definitions.

In the abstract syntax, the id retains whether it is a term or type. In the concrete syntax, an id refers

to a type designator, while id.type refers to a term designator. In that context, term designators are

often called singleton types.

Designators with an empty prefix are called direct designators. They refer to local definitions

available in the scope:

• Local type, object, val, lazy val, var or def definitions

• Term or type parameters

The ids of direct designators are protected from accidental shadowing in the abstract syntax. They

retain the identity of the exact definition they refer to, rather than relying on scope-based name

resolution. 

The prefix cannot be written in the concrete syntax. A bare id is used instead and resolved based on

scopes.

Named designators refer to member definitions of a non-empty prefix:

• Top-level definitions, including top-level classes, have a package ref prefix

• Class member definitions and refinements have a type prefix

A term designator referring to a term definition t has an underlying type . If or is a

package ref, the underlying type is the declared type of t and is a stable type if an only if t is a

val or object definition. Otherwise, the underlying type and whether is a stable type are

determined by memberType(,).

All term designators are concrete types. If scala.Null , the term designator denotes the set of

values consisting of null and the value denoted by , i.e., the value for which t eq v. Otherwise, the

designator denotes the singleton set only containing .

ϵ

ϵ

Term Designators

p.x U p = ϵ p

U p.x

U p.x

p x

<: U

t v

v

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

10 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fn1
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fn1
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type

Type Designators

A type designator referring to a class definition (including traits and hidden object classes) is a

class type. If the class is monomorphic, the type designator is a value type denoting the set of

instances of or any of its subclasses. Otherwise it is a type constructor with the same type

parameters as the class definition. All class types are concrete, non-stable types.

If a type designator is not a class type, it refers to a type definition T (a type parameter or a type

declaration) and has an underlying type definition. If or is a package ref, the underlying type

definition is the declared type definition of T. Otherwise, it is determined by memberType(,). A

non-class type designator is concrete (resp. stable) if and only if its underlying type definition is an

alias and is itself concrete (resp. stable).

ParameterizedType ::= Type ‘[‘ TypeArgs ‘]‘

TypeArgs ::= TypeArg {‘,‘ TypeArg}

TypeArg ::= Type

 | WilcardTypeArg

WildcardTypeArg ::= ‘?‘ TypeBounds

A parameterized type consists of a type constructor and type arguments

where . The parameterized type is well-formed if

• is a type constructor which takes type parameters , i.e., it must conform to a type

lambda of the form , and

• if is an abstract type constructor, none of the type arguments is a wildcard type argument, and

• each type argument conforms to its bounds, i.e., given the substitution

, for each type :

◦ if is a type and , or

◦ is a wildcard type argument and and .

 is a parameterized class type if and only if is a class type. All parameterized class types

are value types.

In the concrete syntax of wildcard type arguments, if both bounds are omitted, the real bounds are

inferred from the bounds of the corresponding type parameter in the target type constructor (which

must be concrete). If only one bound is omitted, Nothing or Any is used, as usual.

Wildcard type arguments used in covariant or contravariant positions can always be simplified to

p.C

C

p.T

p = ϵ p

p T

U U

3.3.3 Parameterized Types

T [T , ..., T]1 n T T , ..., T1 n

n ≥ 1

T n a , ..., a1 n

[±a >1 : L <1 : H , ..., ±a >1 n : L <n : H] =n > U

T

σ [a :1 = T , ..., a :1 n =

T]n i

Ti σL <i : T <i : σHi

Ti ? >: L <T i : HT i σL <i : LT i H <T i : σHi

T [T , ..., T]1 n T

Simplification Rules

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

11 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-definitions
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-definitions
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-designators
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#type-designators

Wildcard type arguments used in covariant or contravariant positions can always be simplified to

regular types.

Let be a parameterized type for a concrete type constructor. Then, applying a wildcard

type argument at the 'th position obeys the following equivalences:

• If the type parameter is declared covariant, then .

• If the type parameter is declared contravariant, then

.

Given the partial type definitions:

class TreeMap[A <: Comparable[A], B] { ... }

class List[+A] { ... }

class I extends Comparable[I] { ... }

class F[M[A], X] { ... } // M[A] desugars to M <: [A] =>> Any

class S[K <: String] { ... }

class G[M[Z <: I], I] { ... } // M[Z <: I] desugars to M <: [Z <: I] =>>

Any

the following parameterized types are well-formed:

TreeMap[I, String]

List[I]

List[List[Boolean]]

F[List, Int]

F[[X] =>> List[X], Int]

G[S, String]

List[?] // ? inferred as List[_ >: Nothing <: Any], equivalent to

List[Any]

List[? <: String] // equivalent to List[String]

S[? <: String]

F[?, Boolean] // ? inferred as ? >: Nothing <: [A] =>> Any

and the following types are ill-formed:

TreeMap[I] // illegal: wrong number of parameters

TreeMap[List[I], Int] // illegal: type parameter not within bound

List[[X] => List[X]]

F[Int, Boolean] // illegal: Int is not a type constructor

F[TreeMap Int] // illegal: TreeMap takes two parameters,

T [T , ..., T]1 n

? >: L <: H i

Ti T [..., ? >: L <: H, ...] =:= T [..., H, ...]

Ti T [..., ? >: L <: H, ...] =:=

T [..., L, ...]

Example Parameterized Types

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

12 of 33 6/7/23, 10:36

F[TreeMap, Int] // illegal: TreeMap takes two parameters,

// F expects a constructor taking one

F[[X, Y] => (X, Y)]

G[S, Int] // illegal: S constrains its parameter to

// conform to String,

// G expects type constructor with a parameter

// that conforms to Int

The following code also contains an ill-formed type:

trait H[F[A]]: // F[A] desugars to F <: [A] =>> Any, which is abstract

def f: F[_] // illegal : an abstract type constructor

// cannot be applied to wildcard arguments.

ThisType ::= classid ‘.‘ ‘this‘

A this type .this denotes the this value of class within .

This types often appear implicitly as the prefix of designator types referring to members of . They

play a particular role in the type system, since they are affected by the as seen from operation on

types.

This types are stable types. The underlying type of .this is the self type of .

SuperType ::= classid ‘.‘ ‘super‘ ‘[‘ classid ‘]‘

A super type .super[] denotes the this value of class C within C, but "widened" to only see

members coming from a parent class or trait .

Super types exist for compatibility with Scala , which allows shadowing of inner classes. In a Scala

-only context, a super type can always be replaced by the corresponding this type. Therefore, we

omit further discussion of super types in this specification.

LiteralType ::= SimpleLiteral

A literal type lit denotes the single literal value lit. Thus, the type ascription 1: 1 gives the most

precise type to the literal value 1: the literal type 1

3.3.4 This Types

C C C

C

C C

3.3.5 Super Types

C D

D

3.3.6 Literal Types

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

13 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#designator-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#designator-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/05-classes-and-objects.html#templates
http://0.0.0.0:4000/files/archive/spec/2.13/05-classes-and-objects.html#templates
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#this-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#this-types

precise type to the literal value 1: the literal type 1.

At run time, an expression e is considered to have literal type lit if e == lit. Concretely, the result of

e.isInstanceOf[lit] and e match { case _ : lit => } is determined by evaluating e == lit.

Literal types are available for all primitive types, as well as for String. However, only literal types for

Int, Long, Float, Double, Boolean, Char and String can be expressed in the concrete syntax.

Literal types are stable types. Their underlying type is the primitive type containing their value.

val x: 1 = 1

val y: false = false

val z: false = y

val int: Int = x

val badX: 1 = int // error: Int is not a subtype of 1

val badY: false = true // error: true is not a subtype of false

ByNameType ::= ‘=>‘ Type

A by-name type denotes the declared type of a by-name term parameter. By-name types can

only appear as the types of parameters in method types, and as type arguments in parameterized

types.

AnnotatedType ::= Type Annotation

An annotated type attaches the annotation to the type .

The following type adds the @suspendable annotation to the type String:

String @suspendable

RefinedType ::= Type ‘{‘ Refinement ‘}‘

Refinement ::= ‘type‘ id TypeAliasOrBounds

 | ‘def‘ id ‘:‘ TypeOrMethodic

Example

3.3.7 By-Name Types

=> T

3.3.8 Annotated Types

T a a T

Example

3.3.9 Refined Types

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

14 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#parameterized-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#parameterized-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#parameterized-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#parameterized-types
http://0.0.0.0:4000/files/archive/spec/2.13/11-annotations.html#user-defined-annotations
http://0.0.0.0:4000/files/archive/spec/2.13/11-annotations.html#user-defined-annotations

 | ‘def‘ id ‘:‘ TypeOrMethodic

 | ‘val‘ id ‘:‘ Type

A refined type denotes the set of values that belong to and also have a member conforming to

the refinement .

The refined type is well-formed if:

• is a proper type, and

• if is a term (def or val) refinement, the refined type is a proper type, and

• if overrides a member of , the usual rules for overriding apply, and

• if is a def refinement with a polymorphic method type, then overrides a member definition

of .

As an exception to the last rule, a polymorphic method type refinement is allowed

if scala.PolyFunction and is the name apply.

If the refinement overrides no member of and is not an occurrence of the scala.PolyFunction

exception, the refinement is said to be “structural” .

Note: since a refinement does not define a class, it is not possible to use a this type to reference term

and type members of the parent type within the refinement. When the surface syntax of refined

types makes such references, a recursive type wraps the refined type, given access to members of self

through a recursive-this type.

Given the following class definitions:

trait T:

type X <: Option[Any]

def foo: Any

def fooPoly[A](x: A): Any

trait U extends T:

override def foo: Int

override def fooPoly[A](x: A): A

trait V extends T

type X = Some[Int]

def bar: Int

def barPoly[A](x: A): A

T R T

R

T R

T

R

R T

R R

T

T <: id

R T

T

Example

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

15 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/05-classes-and-objects.html#overriding
http://0.0.0.0:4000/files/archive/spec/2.13/05-classes-and-objects.html#overriding
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#polymorphic-method-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#polymorphic-method-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fn2
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fn2
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#this-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#this-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#recursive-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#recursive-types

We get the following conformance relationships:

• U <: T { def foo: Int }

• U <: T { def fooPoly[A](x: A): A }

• U <: (T { def foo: Int }) { def fooPoly[A](x: A): A } (we can chain refined types to

refine multiple members)

• V <: T { type X <: Some[Any] }

• V <: T { type X >: Some[Nothing] }

• V <: T { type X = Some[Int] }

• V <: T { def bar: Any } (a structural refinement)

The following refined types are not well-formed:

• T { def barPoly[A](x: A): A } (structural refinement for a polymorphic method type)

• T { type X <: List[Any] } (does not satisfy overriding rules)

• List { def head: Int } (the parent type List is not a proper type)

• T { def foo: List } (the refined type List is not a proper type)

• T { def foo: T.this.X } (T.this is not allowed outside the body of T)

RecursiveType ::= ‘{‘ recid ‘=>‘ Type ‘}‘

RecursiveThis ::= recid ‘.‘ ‘this‘

A recursive type of the form { => } represents the same values as , while offering access to

its recursive this type .

Recursive types cannot directly be expressed in the concrete syntax. They are created as needed when

a refined type in the concrete syntax contains a refinement that needs access to the this value. Each

recursive type defines a unique self-reference , distinct from any other recursive type in the system.

Recursive types can be unfolded during subtyping as needed, replacing references to its by a stable

reference to the other side of the conformance relationship.

3.3.10 Recursive Types

α T T T

α

α

α

Example

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

16 of 33 6/7/23, 10:36

Given the class definitions in the refined types section, we can write the following refined type in the

source syntax:

T { def foo: X }

// equivalent to

T { def foo: this.X }

This type is not directly expressible as a refined type alone, as the refinement cannot access the this

value. Instead, in the abstract syntax of types, it is translated to { => { def foo: .X } }.

Given the following definitions:

trait Z extends T:

type X = Option[Int]

def foo: Option[Int] = Some(5)

val z: Z

we can check that z { => { def foo: .X } }. We first unfold the recursive type,

substituting for , resulting in z T { def foo: z.X }. Since the underlying type of is , we

can resolve z.X to mean Option[Int], and then validate that z T and that z has a member

def foo: Option[Int].

UnionType ::= Type ‘｜‘ Type

IntersectionType ::= Type ‘＆‘ Type

Syntactically, the types S | T and S & T are infix types, where the infix operators are | and &,

respectively (see infix types).

However, in this specification, and refer to the underlying core concepts of union and

intersection types, respectively.

• The type represents the set of values that are represented by either or .

• The type represents the set of values that are represented by both and .

From the conformance rules rules on union and intersection types, we can show that and are

commutative and associative. Moreover, ＆ is distributive over ｜. For any type , and , all of the

following relationships hold:

α T α

<: α T α

z α <: z Z

<:

3.3.11 Union and Intersection Types

S｜T S＆T

S｜T S T

S＆T S T

＆ ｜

A B C

＆ ＆

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

17 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#refined-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#refined-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#infix-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#infix-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#conformance
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#conformance

• ,A＆B =:= B＆A

• ,

• ,

• , and

• .

If is a co- or contravariant type constructor, can be simplified using the following

rules:

• If is covariant,

• If is contravariant,

The right-to-left validity of the above two rules can be derived from the definition of covariance and

contravariance and the conformance rules of union and intersection types:

• When is covariant, we can derive .

• When is contravariant, we can derive .

In some situations, a union type might need to be widened to a non-union type. For this purpose, we

define the join of a union type as the smallest intersection type of base class instances

of . Note that union types might still appear as type arguments in the resulting type, this

guarantees that the join is always finite.

For example, given

trait C[+T]

trait D

trait E

class A extends C[A] with D

class B extends C[B] with D with E

The join of is

SkolemType ::= ‘∃‘ skolemid ‘:‘ Type

Skolem types cannot directly be written in the concrete syntax. Moreover, although they are proper

A｜B =:= B｜A

(A＆B)＆C =:= A＆(B＆C)

(A｜B)｜C =:= A｜(B｜C)

A＆(B｜C) =:= (A＆B)｜(A＆C)

C C[A]＆C[B]

C C[A]＆C[B] =:= C[A＆B]

C C[A]＆C[B] =:= C[A∣B]

C C[A＆B] <: C[A]＆C[B]

C C[A｜B] <: C[A]＆C[B]

Join of a union type

T ｜...｜T1 n

T , ..., T1 n

A｜B C[A｜B]＆D

3.3.12 Skolem Types

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

18 of 33 6/7/23, 10:36

types, they can never be inferred to be part of the types of term definitions (vals, vars and defs).

They are exclusively used temporarily during subtyping derivations.

Skolem types are stable types. A skolem type of the form represents a stable reference to

unknown value of type . The identifier is chosen uniquely every time a skolem type is created.

However, as a skolem type is stable, it can be substituted in several occurrences in other types. When

"copied" through substitution, all the copies retain the same , and are therefore equivalent.

TypeOrMethodic ::= Type

 | MethodicType

MethodicType ::= MethodType

 | PolyType

Methodic types are not real types. They are not part of the type lattice.

However, they share some meta-properties with types. In particular, when contained within other

types that undertake some substitution, the substitution carries to the types within methodic types. It

is therefore often convenient to think about them as types themselves.

Methodic types are used as the "declared type" of def definitions that have at least one term or type

parameter list.

MethodType ::= ‘(‘ MethodTypeParams ‘)‘ TypeOrMethodic

MethodTypeParams ::= ε

 | MethodTypeParam {‘,‘ MethodTypeParam}

MethodTypeParam ::= id ‘:‘ Type

A method type is denoted internally as , where is a sequence of parameter names and

types for some and is a (value or method) type. This type represents

named methods that take arguments named of types and that return a result of

type .

Method types associate to the right: is treated as .

Method types do not exist as types of values. If a method name is used as a value, its type is implicitly

converted to a corresponding function type.

The declarations

∃α : T

T α

α

3.4 Methodic Types

3.4.1 Method Types

(Ps)U (Ps)

(p :1 T , ..., p :1 n T)n n ≥ 0 U

p , ..., p1 n T , ..., T1 n

U

(Ps)(Ps)U1 2 (Ps)((Ps)U)1 2

Example

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

19 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#implicit-conversions
http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#implicit-conversions
http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#implicit-conversions
http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#implicit-conversions

def a: Int

def b (x: Int): Boolean

def c (x: Int) (y: String, z: String): String

produce the typings

a: Int

b: (Int) Boolean

c: (Int) (String, String) String

PolyType ::= ‘[‘ PolyTypeParams ‘]‘ TypeOrMethodic

PolyTypeParams ::= PolyTypeParam {‘,‘ PolyTypeParam}

PolyTypeParam ::= ‘id‘ TypeBounds

A polymorphic method type, or poly type for short, is denoted internally as [] where [] is a

type parameter section [>: <: >: <:] for some and is a (value or

method) type. This type represents named methods that take type arguments which

conform to the lower bounds and the upper bounds and that yield results of type

.

The declarations

def empty[A]: List[A]

def union[A <: Comparable[A]] (x: Set[A], xs: Set[A]): Set[A]

produce the typings

empty : [A >: Nothing <: Any] List[A]

union : [A >: Nothing <: Comparable[A]] (x: Set[A], xs: Set[A]) Set[A]

This section defines a few meta-functions on types and methodic types.

• baseType(,): computes the smallest type of the form . [] such that .

• asSeenFrom(, ,): rebases the type visible inside the class "as seen from" the prefix .

3.4.2 Polymorphic Method Types

tps T tps

a1 L1 U , ..., a1 n Ln Un n ≥ 0 T

S , ..., S1 n

L , ..., L1 n U , ..., U1 n

T

Example

3.5 Operations on Types

T C U p C T , ..., T1 n T <: U

T C p T C p

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

20 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#parameterized-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#parameterized-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#base-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from

• memberType(,): finds a member of a type (T.id) and computes its underlying type or

bounds.

These meta-functions are mutually recursive.

The meta-function baseType(,), where is a proper type and is a class identifier, computes

the smallest type of the form or [] such that . If no such type exists, the

function is not defined. The main purpose of baseType is to substitute prefixes and class type

parameters along the inheritance chain.

We define baseType(,) as follows. For brevity, we write [] instead of with

.

• baseType([],)

• baseType([],) with ≠ if is defined where

◦ is declared as extends

◦ meet(baseType(,) for all such that baseType(,) is defined)

◦ if or if is a package ref; otherwise, asSeenFrom(, ,) (in that

case, is a stable type and must be declared inside another class)

◦ the substitution of the declared type parameters of by the

actual type arguments

• baseType(,) meet baseType(,), baseType(,)

• baseType(,) join baseType(,), baseType(,)

• baseType(,) baseType(superType(),) if superType() is defined

The definition above uses the following helper functions.

superType() computes the "next upper bound" of , if it exists:

• superType() where is a stable type is its underlying type

• superType() where is a non-class type designator is the upper bound of its underlying

type definition

• superType(=>>) is

(i.e., the beta-reduction of the type lambda redex)

T id

3.5.1 Base Type

T C T C

U p.C p.C U , ..., U1 n T <: U

T C p.X U , ..., U1 n p.X n =

0

T = p.C T , ..., T1 n C ≜ T

p.D T , ..., T1 n C D C ≜ σW Q

D D[±a >1 : L <1 : H , ..., ±a >1 n : L <n : H]n P , ..., P1 m

Q = Pi C i Pi C

W = Q p = ϵ p W = Q D p

p D B

σ = [a :1 = T , ..., a :1 n = T]n D

T ＆T1 2 C ≜ (T1 C T2 C)

T ｜T1 2 C ≜ (T1 C T2 C)

T C ≜ T C T

T T

T T

p.X p.X

([a >1 : L <1 : H , ..., a >1 n : L <n : H]n U)[T , ..., T]1 n [a =1 : T , ..., a :1 n = T]Un

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

21 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#member-type

(i.e., the beta-reduction of the type lambda redex)

• superType() is superType() if superType() is defined

Note that the cases of superType do not overlap with each other nor with any baseType case other

than the superType-based one. The cases of baseType therefore do not overlap with each other either.

That makes baseType an algorithmic partial function.

meet(,) computes an intersection of two (parameterized) class types

for the same class, and join computes a union:

• if is false, then it is not defined

• otherwise, let for be:

◦ for meet (resp. for join) if the th type parameter of is covariant

◦ for meet (resp. for join) if the th type parameter of is contravariant

◦ if and the th type parameter of is invariant

◦ not defined otherwise

• if any of the are not defined, the result is not defined

• otherwise, the result is

We generalize meet() for a sequence as:

• not defined for

• if

• meet(meet(),) if meet() is defined

• not defined otherwise

Given the following definitions:

trait Iterable[+A]

trait List[+A] extends Iterable[A]

trait Map[K, +V] extends Iterable[(K, V)]

trait Foo

we have the following baseType results:

baseType(List[Int], List) = List[Int]

T [T , ..., T]1 n T [T , ..., T]1 n T

p.C[T , ..., T]1 n q.C[U , ..., U]1 n

p =:= q

Wi i ∈ 1, ..., n

T＆Ui i T｜Ui i i C

T｜Ui i T＆Ui i i C

Ti T =i := Ui i C

Wi

p.C[W , ..., W]1 n

T , ..., T1 n

n = 0

T1 n = 1

T , ..., T1 n−1 Tn T , ..., T1 n−1

Examples

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

22 of 33 6/7/23, 10:36

• baseType(List[Int], List) = List[Int]

• baseType(List[Int], Iterable) = Iterable[Int]

• baseType(List[A] & Iterable[B], Iterable) = meet(Iterable[A], Iterable[B]) = Iterable[A & B]

• baseType(List[A] & Foo, Iterable) = Iterable[A] (because baseType(Foo, Iterable) is

not defined)

• baseType(Int, Iterable) is not defined

• baseType(Map[Int, String], Iterable) = Iterable[(Int, String)]

• baseType(Map[Int, String] & Map[String, String], Map) is not defined (because K is

invariant)

The meta-function asSeenFrom(, ,), where is a type or methodic type visible inside the

class and is a stable type, rebases the type "as seen from" the prefix . Essentially, it substitutes

this-types and class type parameters in to appropriate types visible from outside. Since T is visible

inside , it can contain this-types and class type parameters of itself as well as of all its enclosing

classes. This-types of enclosing classes must be mapped to appropriate subprefixes of , while class

type parameters must be mapped to appropriate concrete type arguments.

asSeenFrom(, ,) only makes sense if has a base type for , i.e., if baseType(,) is

defined.

We define asSeenFrom(, ,) where baseType(,) = as follows:

• If is a reference to the th class type parameter of some class :

◦ If baseType(,) is defined, then

◦ Otherwise, if or is a package ref, then

◦ Otherwise, is a type, must be defined in another class and baseType(,) must be

defined, then asSeenFrom(, ,)

• Otherwise, if is a this-type .this:

◦ If is a subclass of and baseType(,) is defined, then (this is always the case when

)

◦ Otherwise, if or is a package ref, then

◦ Otherwise, is a type, must be defined in another class and baseType(,) must be

defined, then asSeenFrom()

3.5.2 As Seen From

T C p T

C p T p

T

C C

p

T C p p C p C

T C p p C q.C[U , ..., U]1 n

T i D

p D = r.D[W , ..., W]1 m Wi

q = ϵ q T

q C B q B

T B q

T D

D C p D p

D = C

q = ϵ q T

q C B q B

T B

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

23 of 33 6/7/23, 10:36

defined, then asSeenFrom(, ,)T B q

• Otherwise, where each if of its type components is mapped to asSeenFrom(, ,).

For convenience, we generalize asSeenFrom to type definitions .

• If is an alias , then asSeenFrom(, ,) = asSeenFrom(, ,).

• If is an abstract type definition with bounds , then

asSeenFrom(, ,) = asSeenFrom(, ,) asSeenFrom(, ,).

The meta-function memberType(, ,), where is a proper type, is a term or type identifier,

and is a stable type, finds a member of a type (T.id) and computes its underlying type (for a term)

or type definition (for a type) as seen from the prefix . For a term, it also computes whether the term

is stable. memberType is the fundamental operation that computes the underlying type or underlying

type definition of a named designator type.

The result of a memberType is one of:

• undefined,

• a term result with underlying type or methodic type and a stable flag,

• a class result with class , or

• a type result with underlying type definition .

As short-hand, we define memberType(,) to be the same as memberType(, ,) when is a

stable type.

We define memberType(, ,) as follows:

• If is a possibly parameterized class type of the form (with):

◦ Let be the class member of with name .

◦ If is not defined, the result is undefined.

◦ If is a class declaration, the result is a class result with class .

◦ If is a term definition in class with declared type , the result is a term result with

underlying type asSeenFrom(, ,) and stable flag true if and only if is stable.

◦ If is a type member definition in class with declared type definition , the result is a

type result with underlying type definition asSeenFrom(, ,).

T Ti Ti C p

D

D = U D C p U C p

D >: L <: H

D C p >: L C p <: H C p

3.5.3 Member Type

T id p T id

p

p

M

U

C

D

T id T id T T

T id p

T q.C[T , ..., T]1 n n ≥ 0

m C id

m

m m

m D U

U D p m

m D U

U D p

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

24 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#designator-types
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#designator-types
http://0.0.0.0:4000/files/archive/spec/2.13/05-classes-and-objects.html#class-members
http://0.0.0.0:4000/files/archive/spec/2.13/05-classes-and-objects.html#class-members
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#as-seen-from

• If is another monomorphic type designator of the form :T q.X

◦ Let be memberType(,)

◦ Let be the upper bound of

◦ The result is memberType(, ,)

• If is another parameterized type designator of the form (with):

◦ Let be memberType(,)

◦ Let be the upper bound of

◦ The result is memberType(, ,)

• If is a parameterized type lambda of the

form =>> :

◦ The result is memberType(, ,), i.e., we beta-reduce the type

redex.

• If is a refined type of the form { }:

◦ Let be the result of memberType(, ,).

◦ If the name of the refinement is not , let be undefined.

◦ Otherwise, let be the type or type definition of the refinement , as well as whether it is

stable.

◦ The result is mergeMemberType(,).

• If is a union type of the form :

◦ Let be the join of .

◦ The result is memberType(, ,).

• If is an intersection type of the form :

◦ Let be the result of memberType(, ,).

◦ Let be the result of memberType(, ,).

◦ The result is mergeMemberType(,).

• If is a recursive type of the form { => }:

◦ The result is memberType(, ,).

U q X

H U

H id p

T q.X[T , ..., T]1 n n ≥ 0

U q X

H U

H[T , ..., T]1 n id p

T

([±a >1 : L <1 : H , ..., ±a >1 n : L <n : H]n U)[T , ..., T]1 n

[a :1 = T , ..., a :1 n = T]Un id p

T T1 R

M1 T1 id p

R id M2

M2 R

M1 M2

T T ｜T1 2

J T

J id p

T T ＆T1 2

M1 T1 id p

M2 T2 id p

M1 M2

T α T1

T1 id p

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

25 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#join-of-a-union-type
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#join-of-a-union-type

• If is a stable type:

◦ Let be the underlying type of .

◦ The result is memberType(, ,).

• Otherwise, the result is undefined.

We define the helper function mergeMemberType(,) as:

• If either or is undefined, the result is the other one.

• Otherwise, if either or is a class result, the result is that one.

• Otherwise, and must either both be term results or both be type results.

◦ If they are term results with underlying types and and stable flags and , the result

is a term result whose underlying type is meet(,) and whose stable flag is .

◦ If they are type results with underlying type definitions and , the result is a type result

whose underlying type definition is intersect(,).

We define the following relations between types.

Name Symbolically Interpretation

Conformance Type conforms to ("is a subtype of") type .

Equivalence and conform to each other.

Weak Conformance Augments conformance for primitive numeric types.

Compatibility Type conforms to type after conversions.

The conformance relation is the smallest relation such that is true if any of the

following conditions hold. Note that the conditions are not all mutually exclusive.

• (i.e., conformance is reflexive by definition).

• is Nothing.

• is AnyKind.

• is a stable type with underlying type and .

T

U T

U id p

M1 M2

M1 M2

M1 M2

M1 M2

U1 U2 s1 s2

U1 U2 s ∨1 s2

D1 D2

D1 D2

3.6 Relations between types

T <: U T U

T =:= U T U

T <:w U

T U

3.6.1 Conformance

(<:) S <: T

S = T

S

T

S S1 S <1 : T

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

26 of 33 6/7/23, 10:36

• and are term designators and

◦ isSubPrefix(,).

• and are possibly parameterized type designators

with and:

◦ isSubPrefix(,), and

◦ it is not the case that and are class type designators for different classes, and

◦ for each :

▪ the th type parameter of is covariant and , or

▪ the th type parameter of is contravariant and , or

▪ the th type parameter of is invariant and:

▪ and are types and , or

▪ is a type and is a wildcard type argument of the form and

 and , or

▪ is a wildcard type argument of the form and is a wildcard type

argument of the form and and (i.e., the

"interval" is contained in the "interval").

• with and baseType(,) is defined and `baseType(,) .

• and is non-class type designator and where is the upper

bound of the underlying type definition of .

• and .this and is the hidden class of an object and:

◦ or is a package ref, or

◦ isSubPrefix(, .this) where is the enclosing class of .

• .this and and is the hidden class of an object and:

◦ either or is a package ref, or

◦ isSubPrefix(.this,) where is the enclosing class of .

• and and .

• and either or .

S = p.x T = q.x

p q

S = p.X[S , ..., S]1 n T = q.X[T , ..., T]1 n

n ≥ 0

p q

p.x q.X

i ∈ 1, ..., n

i q.X S <i : Ti

i q.X T <i : Si

i q.X

Si Ti S =i := Ti

Si Ti ? >: L <2 : H2

L <2 : Si S <i : H2

Si ? >: L <1 : H1 Ti

? >: L <2 : H2 L <2 : L1 H <1 : H2 Si

Ti

T = q.C[T , ..., T]1 n n ≥ 0 S C S C <: T

S = p.X[S , ..., S]1 n p.X H <: T H

p.X

S = p.C T = C C

p = ϵ p

p D D C

S = C T = q.C C

q = ϵ q

D q D C

S = S ｜S1 2 S <1 : T S <2 : T

T = T ｜T1 2 S <: T1 S <: T2

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

27 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fn3
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fn3
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fn3
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fn3

• and either or .T T ｜T1 2 S <: T1 S <: T2

• and and .

• and either or .

• @a and .

• @a and (i.e., annotations can be dropped).

• and is a non-class type designator and where is the lower bound of the

underlying type definition of .

• and is a non-class type designator and where is the upper bound of

the underlying type definition of .

• =>>

and =>> , and given

:

◦ , and

◦ for each :

▪ the variance of conforms to the variance of (conforms to and , conforms to

 and , and conforms to), and

▪ is contained in (i.e., and).

• and =>> and is a type constructor

with type parameters and:

◦ =>> where the are copies of

the type parameters of (i.e., we can eta-expand to compare it to a type lambda).

• { } and and, given if is a stable type and otherwise:

◦ type and memberType(,) is a class result for and and

, or

◦ type and memberType(,) is a type result with bounds

 and and , or

◦ val and memberType(,) is a stable term result with type and ,

or

◦ def and memberType(,) is a term result with type and is a type and

, or

T = T ＆T1 2 S <: T1 S <: T2

S = S ＆S1 2 S <1 : T S <2 : T

S = S1 S <1 : T

T = T1 S <: T1

T = q.X q.X S <: L L

q.X

S = p.X p.X H <: T H

p.X

S = [±a >1 : L <1 : H , ..., ±a >1 n : L <n : H]n S1

T = [±b >1 : M <1 : G , ..., ±b >1 n : M <n : G]n T1 σ = [b :1 = a , ..., b :1 n =

a]n

S <1 : σT1

i ∈ 1, ..., n

ai bi + + ϵ −

− ϵ ϵ ϵ

σ(>: M <i : G)i >: L <i : Hi L <i : σMi σG <i : Hi

S = p.X T = [±b >1 : M <1 : G , ..., ±b >1 n : M <n : G]n T1 S

n

([±a >1 : L <1 : H , ..., ±a >1 n : L <n : H]n S[a , ..., a]) <1 n : T ai

S S

T = T1 R S <: T1 p = S S p = ∃α : S

R = X >: L <: H p X C L <: p.C

p.C <: H

R = X >: L <2 : H2 p X >: L <1 :

H1 L <2 : L1 H <1 : H2

R = X : T2 p X S2 S <2 : T2

R = X : T2 p X S2 T2

S <: T

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

28 of 33 6/7/23, 10:36

, orS <2 : T2

◦ def and memberType(,) is a term result with methodic type and is a

methodic type and matches(,).

• { } and .

• { => } and { => } and .

• { => } and is a proper type but not a recursive type and where:

◦ is if is a stable type and otherwise, and

◦ is the result of replacing any top-level recursive type { => } in with

(TODO specify this better).

• => and => and .

• scala.Null and:

◦ with and does not derive from scala.AnyVal and is not the

hidden class of an object, or

◦ is a term designator with underlying type and scala.Null , or

◦ { } and scala.Null , or

◦ { => } and scala.Null .

• is a stable type and is a term designator with underlying type and is a stable

type and .

• { } and .

• { => } and .

We define isSubPrefix(,) where and are prefixes as:

• If both and are types, then .

• Otherwise, (for empty prefixes and package refs).

We define matches(,) where and are types or methodic types as:

• If and are types, then .

• If and are method types and , then

 for each and matches(,), where .

R = X : T2 p X S2 T2

S2 T2

S = S1 R S <1 : T

S = α S1 T = β T1 S <1 : [β := α]T1

T = β T1 S p <′ : [β := p]T1

p S S ∃α : S

p′ γ Z p [γ := p]Z

S = (S)1 T = (T)1 S <1 : T1

S =

T = q.C[T , ..., T]1 n n ≥ 0 C C

T = q.x U <: U

T = T1 R <: T1

T = β T1 <: T1

S T = q.x T1 T1

S <: T1

S = S1 R S <1 : T

S = α S1 S <1 : T

p q p q

p q p <: q

p = q

S T S T

S T S <: T

S T (a :1 S , ..., a :1 n S)Sn
′ (b :1 T , ..., b :1 n T)Tn

′ σS =i :

= Ti i σS ′ T ′ σ = [a :1 = b , ..., a :1 n = b]n

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

29 of 33 6/7/23, 10:36

• If and are poly types and

, then and for each and

matches(,), where .

Note that conformance in Scala is not transitive. Given two abstract types and , and one abstract

type available on prefix , we have and but not necessarily

.

The relation forms pre-order between types, i.e. it is transitive and reflexive. This allows us to

define least upper bounds and greatest lower bounds of a set of types in terms of that order.

• the least upper bound of A and B is the smallest type L such that A <: L and B <: L.

• the greatest lower bound of A and B is the largest type G such that G <: A and G <: B.

By construction, for all types A and B, the least upper bound of A and B is A ｜ B, and their greatest

lower bound is A ＆ B.

Equivalence is defined as mutual conformance.

 if and only if both and .

In some situations Scala uses a more general conformance relation. A type weakly conforms to a

type , written , if or both and are primitive number types and precedes

in the following ordering.

Byte Short

Short Int

Char Int

Int Long

Long Float

Float Double

A weak least upper bound is a least upper bound with respect to weak conformance.

A type is compatible to a type if (or its corresponding function type) weakly conforms to

after applying eta-expansion. If is a method type, it's converted to the corresponding function

type. If the types do not weakly conform, the following alternatives are checked in order:

S T [a >1 : L <s1 : H , ..., a >s1 n : L <sn : H]Ssn
′ [b >1 : L <t1 :

H , ..., b >t1 n : L <tn : H]Ttn
′ σL =si := Lti σH =si := Hti i

σS ′ T ′ σ = [a :1 = b , ..., a :1 n = b]n

A B

C >: A <: B p A <: p.C C <: p.B A <

: B

Least upper bounds and greatest lower bounds

(<:)

3.6.2 Equivalence

S =:= T S <: T T <: S

3.6.3 Weak Conformance

S

T S <:w T S <: T S T S T

<:w
<:w
<:w
<:w
<:w
<:w

3.6.4 Compatibility

T U T U

T

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

30 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#weak-conformance
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#weak-conformance
http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#eta-expansion
http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#eta-expansion

type. If the types do not weakly conform, the following alternatives are checked in order:

• dropping by-name modifiers: if is of the shape (and is not), ;

• SAM conversion: if corresponds to a function type, and declares a single abstract method

whose type corresponds to the function type , .

• implicit conversion: there's an implicit conversion from to in scope;

Given the definitions

def foo(x: Int => String): Unit

def foo(x: ToString): Unit

trait ToString { def convert(x: Int): String }

The application foo((x: Int) => x.toString) resolves to the first overload, as it's more specific:

• Int => String is compatible to ToString -- when expecting a value of type ToString, you may

pass a function literal from Int to String, as it will be SAM-converted to said function;

• ToString is not compatible to Int => String -- when expecting a function from Int to String,

you may not pass a ToString.

A type is realizable if and only if it is inhabited by non-null values. It is defined as:

• A term designator with underlying type is realizable if is or a package ref or a realizable

type and

◦ memberType(,) has the stable flag, or

◦ the type returned by memberType(,) is realizable.

• A stable type that is not a term designator is realizable.

• Another type is realizable if

◦ is concrete, and

◦ has good bounds.

A concrete type has good bounds if all of the following apply:

U => U ′ T T <:w U ′

T U

U ′ T <:w U ′

T U

Examples

Function compatibility via SAM conversion

3.7 Realizability

T

p.x U p ϵ

p x

p x

T

T

T

T

L H L

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

31 of 33 6/7/23, 10:36

http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#sam-conversion
http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#sam-conversion
http://0.0.0.0:4000/files/archive/spec/2.13/07-implicits.html#views
http://0.0.0.0:4000/files/archive/spec/2.13/07-implicits.html#views
http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#overloading-resolution
http://0.0.0.0:4000/files/archive/spec/2.13/06-expressions.html#overloading-resolution

• all its non-class type members have good bounds, i.e., their bounds and are such that L H L <:

,

• all its type refinements have good bounds, and

• for all base classes of :

◦ baseType(,) is defined with some result , and

◦ for all , is a real type or (when it is a wildcard type argument) it has good

bounds.

Note: it is possible for baseType(,) not to be defined because of the meet computation, which

may fail to merge prefixes and/or invariant type arguments.

A type is called generic if it contains type arguments or type variables. Type erasure is a mapping from

(possibly generic) types to non-generic types. We write for the erasure of type . The erasure

mapping is defined as follows.

• The erasure of AnyKind is Object.

• The erasure of a non-class type designator is the erasure of its underlying upper bound.

• The erasure of a term designator is the erasure of its underlying type.

• The erasure of the parameterized type scala.Array is scala.Array .

• The erasure of every other parameterized type is .

• The erasure of a stable type is the erasure of the underlying type of .

• The erasure of a by-name type => is scala.Function0.

• The erasure of an annotated type is .

• The erasure of a refined type { } is .

• The erasure of a recursive type { => } and the associated recursive this type is .

• The erasure of a union type is the erased least upper bound (elub) of the erasures of and

.

• The erasure of an intersection type is the eglb (erased greatest lower bound) of the

erasures of and .

H

C T

T C p.C[T , ..., T]1 n

i ∈ 1, ..., n Ti

T C

3.8 Type Erasure

∣T ∣ T

[T]1 [∣T ∣]1

T [T , ..., T]1 n ∣T ∣

p p

T1

T a1 ∣T ∣1

T1 R ∣T ∣1

α T1 α ∣T ∣1

S｜T S

T

S＆T

S T

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

32 of 33 6/7/23, 10:36

The erased LUB is computed as follows:

• if both argument are arrays of objects, an array of the erased LUB of the element types

• if both arguments are arrays of same primitives, an array of this primitive

• if one argument is array of primitives and the other is array of objects, Object

• if one argument is an array, Object

• otherwise a common superclass or trait S of the argument classes, with the following two

properties:

◦ S is minimal: no other common superclass or trait derives from S, and

◦ S is last: in the linearization of the first argument type there are no minimal common

superclasses or traits that come after S. The reason to pick last is that we prefer classes over

traits that way, which leads to more predictable bytecode and (?) faster dynamic dispatch.

The rules for are given below in pseudocode:

eglb(scala.Array[A], JArray[B]) = scala.Array[eglb(A, B)]

eglb(scala.Array[T], _) = scala.Array[T]

eglb(_, scala.Array[T]) = scala.Array[T]

eglb(A, B) = A if A extends B

eglb(A, B) = B if B extends A

eglb(A, _) = A if A is not a

trait

eglb(_, B) = B if B is not a

trait

eglb(A, _) = A // use first

. In the literature, this is often achieved through De Bruijn indices or through alpha-renaming

when needed. In a concrete implementation, this is often achieved through retaining symbolic

references in a symbol table. ↩

. A reference to a structurally defined member (method call or access to a value or variable) may

generate binary code that is significantly slower than an equivalent code to a non-structural

member. ↩

. In these cases, if T_i and/or U_i are wildcard type arguments, the simplification rules for

parameterized types allow to reduce them to real types. ↩

∣A∣

eglb(A, B)

Types | Scala 2.13 http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#typ...

33 of 33 6/7/23, 10:36

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fnref1
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fnref1
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fnref2
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fnref2
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#simplification-rules
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#simplification-rules
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fnref3
http://0.0.0.0:4000/files/archive/spec/2.13/03-types.html#fnref3

