-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
executable file
·329 lines (285 loc) · 15.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from typing import Any
import jax.numpy as jnp
from absl import app, flags
from functools import partial
import numpy as np
import tqdm
import jax
import jax.numpy as jnp
import flax
import optax
import wandb
from ml_collections import config_flags
import ml_collections
from utils.wandb import setup_wandb, default_wandb_config
from utils.train_state import TrainStateEma
from utils.checkpoint import Checkpoint
from utils.stable_vae import StableVAE
from utils.sharding import create_sharding, all_gather
from utils.datasets import get_dataset
from model import DiT
from helper_eval import eval_model
from helper_inference import do_inference
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset_name', 'imagenet256', 'Environment name.')
flags.DEFINE_string('load_dir', None, 'Logging dir (if not None, save params).')
flags.DEFINE_string('save_dir', None, 'Logging dir (if not None, save params).')
flags.DEFINE_string('fid_stats', None, 'FID stats file.')
flags.DEFINE_integer('seed', 10, 'Random seed.') # Must be the same across all processes.
flags.DEFINE_integer('log_interval', 1000, 'Logging interval.')
flags.DEFINE_integer('eval_interval', 20000, 'Eval interval.')
flags.DEFINE_integer('save_interval', 100000, 'Eval interval.')
flags.DEFINE_integer('batch_size', 32, 'Mini batch size.')
flags.DEFINE_integer('max_steps', int(1_000_000), 'Number of training steps.')
flags.DEFINE_integer('debug_overfit', 0, 'Debug overfitting.')
flags.DEFINE_string('mode', 'train', 'train or inference.')
model_config = ml_collections.ConfigDict({
'lr': 0.0001,
'beta1': 0.9,
'beta2': 0.999,
'weight_decay': 0.1,
'use_cosine': 0,
'warmup': 0,
'dropout': 0.0,
'hidden_size': 64, # change this!
'patch_size': 8, # change this!
'depth': 2, # change this!
'num_heads': 2, # change this!
'mlp_ratio': 1, # change this!
'class_dropout_prob': 0.1,
'num_classes': 1000,
'denoise_timesteps': 128,
'cfg_scale': 4.0,
'target_update_rate': 0.999,
'use_ema': 0,
'use_stable_vae': 1,
'sharding': 'dp', # dp or fsdp.
't_sampling': 'discrete-dt',
'dt_sampling': 'uniform',
'bootstrap_cfg': 0,
'bootstrap_every': 8, # Make sure its a divisor of batch size.
'bootstrap_ema': 1,
'bootstrap_dt_bias': 0,
'train_type': 'shortcut' # or naive.
})
wandb_config = default_wandb_config()
wandb_config.update({
'project': 'shortcut',
'name': 'shortcut_{dataset_name}',
})
config_flags.DEFINE_config_dict('wandb', wandb_config, lock_config=False)
config_flags.DEFINE_config_dict('model', model_config, lock_config=False)
##############################################
## Training Code.
##############################################
def main(_):
np.random.seed(FLAGS.seed)
print("Using devices", jax.local_devices())
device_count = len(jax.local_devices())
global_device_count = jax.device_count()
print("Device count", device_count)
print("Global device count", global_device_count)
local_batch_size = FLAGS.batch_size // (global_device_count // device_count)
print("Global Batch: ", FLAGS.batch_size)
print("Node Batch: ", local_batch_size)
print("Device Batch:", local_batch_size // device_count)
# Create wandb logger
if jax.process_index() == 0 and FLAGS.mode == 'train':
setup_wandb(FLAGS.model.to_dict(), **FLAGS.wandb)
dataset = get_dataset(FLAGS.dataset_name, local_batch_size, True, FLAGS.debug_overfit)
dataset_valid = get_dataset(FLAGS.dataset_name, local_batch_size, False, FLAGS.debug_overfit)
example_obs, example_labels = next(dataset)
example_obs = example_obs[:1]
example_obs_shape = example_obs.shape
if FLAGS.model.use_stable_vae:
vae = StableVAE.create()
if 'latent' in FLAGS.dataset_name:
example_obs = example_obs[:, :, :, example_obs.shape[-1] // 2:]
example_obs_shape = example_obs.shape
else:
example_obs = vae.encode(jax.random.PRNGKey(0), example_obs)
example_obs_shape = example_obs.shape
vae_rng = jax.random.PRNGKey(42)
vae_encode = jax.jit(vae.encode)
vae_decode = jax.jit(vae.decode)
if FLAGS.fid_stats is not None:
from utils.fid import get_fid_network, fid_from_stats
get_fid_activations = get_fid_network()
truth_fid_stats = np.load(FLAGS.fid_stats)
else:
get_fid_activations = None
truth_fid_stats = None
###################################
# Creating Model and put on devices.
###################################
FLAGS.model.image_channels = example_obs_shape[-1]
FLAGS.model.image_size = example_obs_shape[1]
dit_args = {
'patch_size': FLAGS.model['patch_size'],
'hidden_size': FLAGS.model['hidden_size'],
'depth': FLAGS.model['depth'],
'num_heads': FLAGS.model['num_heads'],
'mlp_ratio': FLAGS.model['mlp_ratio'],
'out_channels': example_obs_shape[-1],
'class_dropout_prob': FLAGS.model['class_dropout_prob'],
'num_classes': FLAGS.model['num_classes'],
'dropout': FLAGS.model['dropout'],
'ignore_dt': False if (FLAGS.model['train_type'] in ('shortcut', 'livereflow')) else True,
}
model_def = DiT(**dit_args)
tabulate_fn = flax.linen.tabulate(model_def, jax.random.PRNGKey(0))
print(tabulate_fn(example_obs, jnp.zeros((1,)), jnp.zeros((1,)), jnp.zeros((1,), dtype=jnp.int32)))
if FLAGS.model.use_cosine:
lr_schedule = optax.warmup_cosine_decay_schedule(0.0, FLAGS.model['lr'], FLAGS.model['warmup'], FLAGS.max_steps)
elif FLAGS.model.warmup > 0:
lr_schedule = optax.linear_schedule(0.0, FLAGS.model['lr'], FLAGS.model['warmup'])
else:
lr_schedule = lambda x: FLAGS.model['lr']
adam = optax.adamw(learning_rate=lr_schedule, b1=FLAGS.model['beta1'], b2=FLAGS.model['beta2'], weight_decay=FLAGS.model['weight_decay'])
tx = optax.chain(adam)
def init(rng):
param_key, dropout_key, dropout2_key = jax.random.split(rng, 3)
example_t = jnp.zeros((1,))
example_dt = jnp.zeros((1,))
example_label = jnp.zeros((1,), dtype=jnp.int32)
example_obs = jnp.zeros(example_obs_shape)
model_rngs = {'params': param_key, 'label_dropout': dropout_key, 'dropout': dropout2_key}
params = model_def.init(model_rngs, example_obs, example_t, example_dt, example_label)['params']
opt_state = tx.init(params)
return TrainStateEma.create(model_def, params, rng=rng, tx=tx, opt_state=opt_state)
rng = jax.random.PRNGKey(FLAGS.seed)
train_state_shape = jax.eval_shape(init, rng)
data_sharding, train_state_sharding, no_shard, shard_data, global_to_local = create_sharding(FLAGS.model.sharding, train_state_shape)
train_state = jax.jit(init, out_shardings=train_state_sharding)(rng)
jax.debug.visualize_array_sharding(train_state.params['FinalLayer_0']['Dense_0']['kernel'])
jax.debug.visualize_array_sharding(train_state.params['TimestepEmbedder_1']['Dense_0']['kernel'])
jax.experimental.multihost_utils.assert_equal(train_state.params['TimestepEmbedder_1']['Dense_0']['kernel'])
start_step = 1
if FLAGS.load_dir is not None:
cp = Checkpoint(FLAGS.load_dir)
replace_dict = cp.load_as_dict()['train_state']
del replace_dict['opt_state'] # Debug
train_state = train_state.replace(**replace_dict)
if FLAGS.wandb.run_id != "None": # If we are continuing a run.
start_step = train_state.step
train_state = jax.jit(lambda x : x, out_shardings=train_state_sharding)(train_state)
print("Loaded model with step", train_state.step)
train_state = train_state.replace(step=0)
jax.debug.visualize_array_sharding(train_state.params['FinalLayer_0']['Dense_0']['kernel'])
del cp
if FLAGS.model.train_type == 'progressive' or FLAGS.model.train_type == 'consistency-distillation':
train_state_teacher = jax.jit(lambda x : x, out_shardings=train_state_sharding)(train_state)
else:
train_state_teacher = None
visualize_labels = example_labels
visualize_labels = shard_data(visualize_labels)
visualize_labels = jax.experimental.multihost_utils.process_allgather(visualize_labels)
imagenet_labels = open('data/imagenet_labels.txt').read().splitlines()
###################################
# Update Function
###################################
@partial(jax.jit, out_shardings=(train_state_sharding, no_shard))
def update(train_state, train_state_teacher, images, labels, force_t=-1, force_dt=-1):
new_rng, targets_key, dropout_key, perm_key = jax.random.split(train_state.rng, 4)
info = {}
id_perm = jax.random.permutation(perm_key, images.shape[0])
images = images[id_perm]
labels = labels[id_perm]
images = jax.lax.with_sharding_constraint(images, data_sharding)
labels = jax.lax.with_sharding_constraint(labels, data_sharding)
if FLAGS.model['cfg_scale'] == 0: # For unconditional generation.
labels = jnp.ones(labels.shape[0], dtype=jnp.int32) * FLAGS.model['num_classes']
if FLAGS.model['train_type'] == 'naive':
from baselines.targets_naive import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'shortcut':
from targets_shortcut import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'progressive':
from baselines.targets_progressive import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, train_state_teacher, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'consistency-distillation':
from baselines.targets_consistency_distillation import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, train_state_teacher, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'consistency':
from baselines.targets_consistency_training import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'livereflow':
from baselines.targets_livereflow import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
def loss_fn(grad_params):
v_prime, logvars, activations = train_state.call_model(x_t, t, dt_base, labels, train=True, rngs={'dropout': dropout_key}, params=grad_params, return_activations=True)
mse_v = jnp.mean((v_prime - v_t) ** 2, axis=(1, 2, 3))
loss = jnp.mean(mse_v)
info = {
'loss': loss,
'v_magnitude_prime': jnp.sqrt(jnp.mean(jnp.square(v_prime))),
**{'activations/' + k : jnp.sqrt(jnp.mean(jnp.square(v))) for k, v in activations.items()},
}
if FLAGS.model['train_type'] == 'shortcut' or FLAGS.model['train_type'] == 'livereflow':
bootstrap_size = FLAGS.batch_size // FLAGS.model['bootstrap_every']
info['loss_flow'] = jnp.mean(mse_v[bootstrap_size:])
info['loss_bootstrap'] = jnp.mean(mse_v[:bootstrap_size])
return loss, info
grads, new_info = jax.grad(loss_fn, has_aux=True)(train_state.params)
info = {**info, **new_info}
updates, new_opt_state = train_state.tx.update(grads, train_state.opt_state, train_state.params)
new_params = optax.apply_updates(train_state.params, updates)
info['grad_norm'] = optax.global_norm(grads)
info['update_norm'] = optax.global_norm(updates)
info['param_norm'] = optax.global_norm(new_params)
info['lr'] = lr_schedule(train_state.step)
train_state = train_state.replace(rng=new_rng, step=train_state.step + 1, params=new_params, opt_state=new_opt_state)
train_state = train_state.update_ema(FLAGS.model['target_update_rate'])
return train_state, info
if FLAGS.mode != 'train':
do_inference(FLAGS, train_state, None, dataset, dataset_valid, shard_data, vae_encode, vae_decode, update,
get_fid_activations, imagenet_labels, visualize_labels,
fid_from_stats, truth_fid_stats)
return
###################################
# Train Loop
###################################
for i in tqdm.tqdm(range(1 + start_step, FLAGS.max_steps + 1 + start_step),
smoothing=0.1,
dynamic_ncols=True):
# Sample data.
if not FLAGS.debug_overfit or i == 1:
batch_images, batch_labels = shard_data(*next(dataset))
if FLAGS.model.use_stable_vae and 'latent' not in FLAGS.dataset_name:
vae_rng, vae_key = jax.random.split(vae_rng)
batch_images = vae_encode(vae_key, batch_images)
# Train update.
train_state, update_info = update(train_state, train_state_teacher, batch_images, batch_labels)
if i % FLAGS.log_interval == 0 or i == 1:
update_info = jax.device_get(update_info)
update_info = jax.tree_map(lambda x: np.array(x), update_info)
update_info = jax.tree_map(lambda x: x.mean(), update_info)
train_metrics = {f'training/{k}': v for k, v in update_info.items()}
valid_images, valid_labels = shard_data(*next(dataset_valid))
if FLAGS.model.use_stable_vae and 'latent' not in FLAGS.dataset_name:
valid_images = vae_encode(vae_rng, valid_images)
_, valid_update_info = update(train_state, train_state_teacher, valid_images, valid_labels)
valid_update_info = jax.device_get(valid_update_info)
valid_update_info = jax.tree_map(lambda x: x.mean(), valid_update_info)
train_metrics['training/loss_valid'] = valid_update_info['loss']
if jax.process_index() == 0:
wandb.log(train_metrics, step=i)
if FLAGS.model['train_type'] == 'progressive':
num_sections = np.log2(FLAGS.model['denoise_timesteps']).astype(jnp.int32)
if i % (FLAGS.max_steps // num_sections) == 0:
train_state_teacher = jax.jit(lambda x : x, out_shardings=train_state_sharding)(train_state)
if i % FLAGS.eval_interval == 0:
eval_model(FLAGS, train_state, train_state_teacher, i, dataset, dataset_valid, shard_data, vae_encode, vae_decode, update,
get_fid_activations, imagenet_labels, visualize_labels,
fid_from_stats, truth_fid_stats)
if i % FLAGS.save_interval == 0 and FLAGS.save_dir is not None:
train_state_gather = jax.experimental.multihost_utils.process_allgather(train_state)
if jax.process_index() == 0:
cp = Checkpoint(FLAGS.save_dir+str(train_state_gather.step+1), parallel=False)
cp.train_state = train_state_gather
cp.save()
del cp
del train_state_gather
if __name__ == '__main__':
app.run(main)