* Validate popular LLMs such as LLama2, [LLama](examples/onnxrt/nlp/huggingface_model/text_generation/llama/quantization/ptq_static), [MPT](https://github.com/intel/intel-extension-for-transformers/blob/main/examples/huggingface/pytorch/text-generation/quantization/README.md), [Falcon](https://github.com/intel/intel-extension-for-transformers/blob/main/examples/huggingface/pytorch/language-modeling/quantization/README.md), [GPT-J](/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/fx), [Bloom](/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant), [OPT](/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant), and more than 10,000 broad models such as [Stable Diffusion](/examples/pytorch/nlp/huggingface_models/text-to-image/quantization), [BERT-Large](/examples/pytorch/nlp/huggingface_models/text-classification/quantization/ptq_static/fx), and [ResNet50](/examples/pytorch/image_recognition/torchvision_models/quantization/ptq/cpu/fx) from popular model hubs such as [Hugging Face](https://huggingface.co/), [Torch Vision](https://pytorch.org/vision/stable/index.html), and [ONNX Model Zoo](https://github.com/onnx/models#models), by leveraging zero-code optimization solution [Neural Coder](/neural_coder#what-do-we-offer) and automatic [accuracy-driven](/docs/source/design.md#workflow) quantization strategies
0 commit comments