Skip to content

Timings #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
gwvr opened this issue Jun 12, 2020 · 5 comments
Open

Timings #1

gwvr opened this issue Jun 12, 2020 · 5 comments

Comments

@gwvr
Copy link

gwvr commented Jun 12, 2020

i7z is Intel only, hence inxi -C.

$ inxi -C
CPU: Topology: 6-Core model: AMD Ryzen 5 3600 bits: 64 type: MT MCP L2 cache: 3072 KiB
Speed: 2199 MHz min/max: 2200/3600 MHz Core speeds (MHz): 1: 2200 2: 2200 3: 2199 4: 2203 5: 2201 6: 2200 7: 2200
8: 2196 9: 2197 10: 2196 11: 2200 12: 2200

timings

@abayirli
Copy link

abayirli commented Jun 13, 2020

Here are the results for my case:

CPU: Topology: 6-Core model: Intel Core i7-9750H bits: 64 type: MT MCP L2 cache: 12.0 MiB Speed: 800 MHz min/max: 800/4500 MHz Core speeds (MHz): 1: 800 2: 800 3: 800 4: 800 5: 800 6: 800 7: 801 8: 800 9: 800 10: 800 11: 800 12: 800

Pandas: 1.0.3
NumPy: 1.18.1
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 9 columns):
 #   Column      Dtype   
---  ------      -----   
 0   int64       int64   
 1   int32       int32   
 2   int16       int16   
 3   int8        int8    
 4   uint8       uint8   
 5   longdouble  float128
 6   float64     float64 
 7   float32     float32 
 8   float16     float16 
dtypes: float128(1), float16(1), float32(1), float64(1), int16(1), int32(1), int64(1), int8(1), uint8(1)
memory usage: 438.7 MB
Working on int64
Working on int32
Working on int16
Working on int8
Working on uint8
Working on longdouble
Working on float64
Working on float32
Working on float16
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1800 entries, 0 to 1799
Data columns (total 3 columns):
 #   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  
 0   fn_name  1800 non-null   object 
 1   col      1800 non-null   object 
 2   t        1800 non-null   float64
dtypes: float64(1), object(2)
memory usage: 42.3+ KB

timings

@ThomasLecocq
Copy link

ThomasLecocq commented Jun 13, 2020

Windows 10 laptop, i7, 16GB ram

Pandas: 1.0.1
NumPy: 1.18.1
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 9 columns):
 #   Column      Dtype
---  ------      -----
 0   int64       int64
 1   int32       int32
 2   int16       int16
 3   int8        int8
 4   uint8       uint8
 5   longdouble  float64
 6   float64     float64
 7   float32     float32
 8   float16     float16
dtypes: float16(1), float32(1), float64(2), int16(1), int32(1), int64(1), int8(1), uint8(1)
memory usage: 362.4 MB
Working on int64
Working on int32
Working on int16
Working on int8
Working on uint8
Working on longdouble
Working on float64
Working on float32
Working on float16
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1800 entries, 0 to 1799
Data columns (total 3 columns):
 #   Column   Non-Null Count  Dtype
---  ------   --------------  -----
 0   fn_name  1800 non-null   object
 1   col      1800 non-null   object
 2   t        1800 non-null   float64
dtypes: float64(1), object(2)
memory usage: 42.3+ KB

timings
pickle can't be uploaded here: https://asktom.be/python/tmp/


Linux (Ubuntu) computing blade, 16 core, 192GB ram:

Pandas: 0.25.1
NumPy: 1.17.2
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 9 columns):
int64         int64
int32         int32
int16         int16
int8          int8
uint8         uint8
longdouble    float128
float64       float64
float32       float32
float16       float16
dtypes: float128(1), float16(1), float32(1), float64(1), int16(1), int32(1), int64(1), int8(1), uint8(1)
memory usage: 438.7 MB
Working on int64
Working on int32
Working on int16
Working on int8
Working on uint8
Working on longdouble
Working on float64
Working on float32
Working on float16
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1800 entries, 0 to 1799
Data columns (total 3 columns):
fn_name    1800 non-null object
col        1800 non-null object
t          1800 non-null float64
dtypes: float64(1), object(2)
memory usage: 42.3+ KB

linux-timings

pickle can't be uploaded here: https://asktom.be/python/tmp/

@ThomasLecocq
Copy link

one more on a fresh env with only pandas, numpy and matplotlib and their dependencies:

Pandas: 1.0.4
NumPy: 1.18.5
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 9 columns):
 #   Column      Dtype
---  ------      -----
 0   int64       int64
 1   int32       int32
 2   int16       int16
 3   int8        int8
 4   uint8       uint8
 5   longdouble  float128
 6   float64     float64
 7   float32     float32
 8   float16     float16
dtypes: float128(1), float16(1), float32(1), float64(1), int16(1), int32(1), int64(1), int8(1), uint8(1)
memory usage: 438.7 MB
Working on int64
Working on int32
Working on int16
Working on int8
Working on uint8
Working on longdouble
Working on float64
Working on float32
Working on float16
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1800 entries, 0 to 1799
Data columns (total 3 columns):
 #   Column   Non-Null Count  Dtype
---  ------   --------------  -----
 0   fn_name  1800 non-null   object
 1   col      1800 non-null   object
 2   t        1800 non-null   float64
dtypes: float64(1), object(2)
memory usage: 42.3+ KB

linux2-timings

@ThomasLecocq
Copy link

with the last pre-1.0 version:

Pandas: 0.25.3
NumPy: 1.18.5
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 9 columns):
int64         int64
int32         int32
int16         int16
int8          int8
uint8         uint8
longdouble    float128
float64       float64
float32       float32
float16       float16
dtypes: float128(1), float16(1), float32(1), float64(1), int16(1), int32(1), int64(1), int8(1), uint8(1)
memory usage: 438.7 MB
Working on int64
Working on int32
Working on int16
Working on int8
Working on uint8
Working on longdouble
Working on float64
Working on float32
Working on float16
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1800 entries, 0 to 1799
Data columns (total 3 columns):
fn_name    1800 non-null object
col        1800 non-null object
t          1800 non-null float64
dtypes: float64(1), object(2)
memory usage: 42.3+ KB

linux3-timings

@ThomasLecocq
Copy link

just for fun, ran the previous code (removing fstrings etc) on py27:

('Pandas:', u'0.24.2')
('NumPy:', '1.16.5')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 9 columns):
float16       float16
float32       float32
float64       float64
int16         int16
int32         int32
int64         int64
int8          int8
longdouble    float128
uint8         uint8
dtypes: float128(1), float16(1), float32(1), float64(1), int16(1), int32(1), int64(1), int8(1), uint8(1)
memory usage: 438.7 MB
('Working on', 'float16')
('Working on', 'float32')
('Working on', 'float64')
('Working on', 'int16')
('Working on', 'int32')
('Working on', 'int64')
('Working on', 'int8')
('Working on', 'longdouble')
('Working on', 'uint8')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1800 entries, 0 to 1799
Data columns (total 3 columns):
col        1800 non-null object
fn_name    1800 non-null object
t          1800 non-null float64
dtypes: float64(1), object(2)
memory usage: 42.3+ KB

py27timings

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants