diff --git a/examples/unconditional_image_generation/train_unconditional.py b/examples/unconditional_image_generation/train_unconditional.py index f9f8c85bd1e3..506345140cd3 100644 --- a/examples/unconditional_image_generation/train_unconditional.py +++ b/examples/unconditional_image_generation/train_unconditional.py @@ -138,7 +138,7 @@ def transforms(examples): with accelerator.accumulate(model): # Predict the noise residual - noise_pred = model(noisy_images, timesteps).sample + noise_pred = model(noisy_images, timesteps) loss = F.mse_loss(noise_pred, noise) accelerator.backward(loss) diff --git a/examples/unconditional_image_generation/train_unconditional_ort.py b/examples/unconditional_image_generation/train_unconditional_ort.py new file mode 100644 index 000000000000..cb0027932553 --- /dev/null +++ b/examples/unconditional_image_generation/train_unconditional_ort.py @@ -0,0 +1,251 @@ +import argparse +import math +import os + +import torch +import torch.nn.functional as F + +from accelerate import Accelerator +from accelerate.logging import get_logger +from datasets import load_dataset +from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel +from diffusers.hub_utils import init_git_repo +from diffusers.optimization import get_scheduler +from diffusers.training_utils import EMAModel +from torchvision.transforms import ( + CenterCrop, + Compose, + InterpolationMode, + Normalize, + RandomHorizontalFlip, + Resize, + ToTensor, +) +from tqdm.auto import tqdm +from onnxruntime.training.ortmodule import ORTModule + + +logger = get_logger(__name__) + + +def main(args): + logging_dir = os.path.join(args.output_dir, args.logging_dir) + accelerator = Accelerator( + gradient_accumulation_steps=args.gradient_accumulation_steps, + mixed_precision=args.mixed_precision, + log_with="tensorboard", + logging_dir=logging_dir, + ) + + model = UNet2DModel( + sample_size=args.resolution, + in_channels=3, + out_channels=3, + layers_per_block=2, + block_out_channels=(128, 128, 256, 256, 512, 512), + down_block_types=( + "DownBlock2D", + "DownBlock2D", + "DownBlock2D", + "DownBlock2D", + "AttnDownBlock2D", + "DownBlock2D", + ), + up_block_types=( + "UpBlock2D", + "AttnUpBlock2D", + "UpBlock2D", + "UpBlock2D", + "UpBlock2D", + "UpBlock2D", + ), + ) + model = ORTModule(model) + noise_scheduler = DDPMScheduler(num_train_timesteps=1000) + + optimizer = torch.optim.AdamW( + model.parameters(), + lr=args.learning_rate, + betas=(args.adam_beta1, args.adam_beta2), + weight_decay=args.adam_weight_decay, + eps=args.adam_epsilon, + ) + + augmentations = Compose( + [ + Resize(args.resolution, interpolation=InterpolationMode.BILINEAR), + CenterCrop(args.resolution), + RandomHorizontalFlip(), + ToTensor(), + Normalize([0.5], [0.5]), + ] + ) + + if args.dataset_name is not None: + dataset = load_dataset( + args.dataset_name, + args.dataset_config_name, + cache_dir=args.cache_dir, + split="train", + ) + else: + dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") + + def transforms(examples): + images = [augmentations(image.convert("RGB")) for image in examples["image"]] + return {"input": images} + + dataset.set_transform(transforms) + train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True) + + lr_scheduler = get_scheduler( + args.lr_scheduler, + optimizer=optimizer, + num_warmup_steps=args.lr_warmup_steps, + num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps, + ) + + model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + model, optimizer, train_dataloader, lr_scheduler + ) + + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + + ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay) + + if args.push_to_hub: + repo = init_git_repo(args, at_init=True) + + if accelerator.is_main_process: + run = os.path.split(__file__)[-1].split(".")[0] + accelerator.init_trackers(run) + + global_step = 0 + for epoch in range(args.num_epochs): + model.train() + progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) + progress_bar.set_description(f"Epoch {epoch}") + for step, batch in enumerate(train_dataloader): + clean_images = batch["input"] + # Sample noise that we'll add to the images + noise = torch.randn(clean_images.shape).to(clean_images.device) + bsz = clean_images.shape[0] + # Sample a random timestep for each image + timesteps = torch.randint( + 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device + ).long() + + # Add noise to the clean images according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) + + with accelerator.accumulate(model): + # Predict the noise residual + noise_pred = model(noisy_images, timesteps) + loss = F.mse_loss(noise_pred, noise) + accelerator.backward(loss) + + if accelerator.sync_gradients: + accelerator.clip_grad_norm_(model.parameters(), 1.0) + optimizer.step() + lr_scheduler.step() + if args.use_ema: + ema_model.step(model) + optimizer.zero_grad() + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + + logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} + if args.use_ema: + logs["ema_decay"] = ema_model.decay + progress_bar.set_postfix(**logs) + accelerator.log(logs, step=global_step) + progress_bar.close() + + accelerator.wait_for_everyone() + + # Generate sample images for visual inspection + if accelerator.is_main_process: + if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: + pipeline = DDPMPipeline( + unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model), + scheduler=noise_scheduler, + ) + + generator = torch.manual_seed(0) + # run pipeline in inference (sample random noise and denoise) + images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy").images + + # denormalize the images and save to tensorboard + images_processed = (images * 255).round().astype("uint8") + accelerator.trackers[0].writer.add_images( + "test_samples", images_processed.transpose(0, 3, 1, 2), epoch + ) + + if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: + # save the model + pipeline.save_pretrained(args.output_dir) + if args.push_to_hub: + repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False) + accelerator.wait_for_everyone() + + accelerator.end_training() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Simple example of a training script.") + parser.add_argument("--local_rank", type=int, default=-1) + parser.add_argument("--dataset_name", type=str, default=None) + parser.add_argument("--dataset_config_name", type=str, default=None) + parser.add_argument("--train_data_dir", type=str, default=None, help="A folder containing the training data.") + parser.add_argument("--output_dir", type=str, default="ddpm-model-64") + parser.add_argument("--overwrite_output_dir", action="store_true") + parser.add_argument("--cache_dir", type=str, default=None) + parser.add_argument("--resolution", type=int, default=64) + parser.add_argument("--train_batch_size", type=int, default=16) + parser.add_argument("--eval_batch_size", type=int, default=16) + parser.add_argument("--num_epochs", type=int, default=100) + parser.add_argument("--save_images_epochs", type=int, default=10) + parser.add_argument("--save_model_epochs", type=int, default=10) + parser.add_argument("--gradient_accumulation_steps", type=int, default=1) + parser.add_argument("--learning_rate", type=float, default=1e-4) + parser.add_argument("--lr_scheduler", type=str, default="cosine") + parser.add_argument("--lr_warmup_steps", type=int, default=500) + parser.add_argument("--adam_beta1", type=float, default=0.95) + parser.add_argument("--adam_beta2", type=float, default=0.999) + parser.add_argument("--adam_weight_decay", type=float, default=1e-6) + parser.add_argument("--adam_epsilon", type=float, default=1e-08) + parser.add_argument("--use_ema", action="store_true", default=True) + parser.add_argument("--ema_inv_gamma", type=float, default=1.0) + parser.add_argument("--ema_power", type=float, default=3 / 4) + parser.add_argument("--ema_max_decay", type=float, default=0.9999) + parser.add_argument("--push_to_hub", action="store_true") + parser.add_argument("--hub_token", type=str, default=None) + parser.add_argument("--hub_model_id", type=str, default=None) + parser.add_argument("--hub_private_repo", action="store_true") + parser.add_argument("--logging_dir", type=str, default="logs") + parser.add_argument( + "--mixed_precision", + type=str, + default="no", + choices=["no", "fp16", "bf16"], + help=( + "Whether to use mixed precision. Choose" + "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." + "and an Nvidia Ampere GPU." + ), + ) + parser.add_argument("--ort", action="store_true") + + args = parser.parse_args() + env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) + if env_local_rank != -1 and env_local_rank != args.local_rank: + args.local_rank = env_local_rank + + if args.dataset_name is None and args.train_data_dir is None: + raise ValueError("You must specify either a dataset name from the hub or a train data directory.") + + main(args) diff --git a/src/diffusers/models/unet_2d.py b/src/diffusers/models/unet_2d.py index b580b4ed4056..fe125888e4ec 100644 --- a/src/diffusers/models/unet_2d.py +++ b/src/diffusers/models/unet_2d.py @@ -258,4 +258,4 @@ def forward( if not return_dict: return (sample,) - return UNet2DOutput(sample=sample) + return sample diff --git a/src/diffusers/pipeline_utils.py b/src/diffusers/pipeline_utils.py index 5d186f35ea11..b6c6bb0f668d 100644 --- a/src/diffusers/pipeline_utils.py +++ b/src/diffusers/pipeline_utils.py @@ -72,6 +72,9 @@ "PreTrainedModel": ["save_pretrained", "from_pretrained"], "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"], }, + "onnxruntime.training": { + "ORTModule": ["save_pretrained", "from_pretrained"], + } } ALL_IMPORTABLE_CLASSES = {} diff --git a/src/diffusers/pipelines/ddpm/pipeline_ddpm.py b/src/diffusers/pipelines/ddpm/pipeline_ddpm.py index aae29737aae3..18df4cee21a3 100644 --- a/src/diffusers/pipelines/ddpm/pipeline_ddpm.py +++ b/src/diffusers/pipelines/ddpm/pipeline_ddpm.py @@ -77,7 +77,7 @@ def __call__( for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output - model_output = self.unet(image, t).sample + model_output = self.unet(image, t) # 2. compute previous image: x_t -> t_t-1 image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample diff --git a/tests/test_models_unet.py b/tests/test_models_unet.py index 7a16a8592644..3a7a30b1ecb3 100644 --- a/tests/test_models_unet.py +++ b/tests/test_models_unet.py @@ -131,7 +131,7 @@ def test_from_pretrained_hub(self): self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) - image = model(**self.dummy_input).sample + image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" @@ -141,7 +141,7 @@ def test_from_pretrained_accelerate(self): "fusing/unet-ldm-dummy-update", output_loading_info=True, device_map="auto" ) model.to(torch_device) - image = model(**self.dummy_input).sample + image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" @@ -219,7 +219,7 @@ def test_output_pretrained(self): time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) with torch.no_grad(): - output = model(noise, time_step).sample + output = model(noise, time_step) output_slice = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off @@ -294,7 +294,7 @@ def test_gradient_checkpointing(self): assert model_2.is_gradient_checkpointing and model_2.training - out_2 = model_2(**inputs_dict).sample + out_2 = model_2(**inputs_dict) # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_2.zero_grad() @@ -412,7 +412,7 @@ def test_output_pretrained_ve_mid(self): time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): - output = model(noise, time_step).sample + output = model(noise, time_step) output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off @@ -437,7 +437,7 @@ def test_output_pretrained_ve_large(self): time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): - output = model(noise, time_step).sample + output = model(noise, time_step) output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off