diff --git a/docs/source/en/training/kandinsky.md b/docs/source/en/training/kandinsky.md
index 2caec1035fa9..a1854d76c492 100644
--- a/docs/source/en/training/kandinsky.md
+++ b/docs/source/en/training/kandinsky.md
@@ -205,7 +205,7 @@ model_pred = unet(noisy_latents, timesteps, None, added_cond_kwargs=added_cond_k
Once youโve made all your changes or youโre okay with the default configuration, youโre ready to launch the training script! ๐
-You'll train on the [Pokรฉmon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate your own Pokรฉmon, but you can also create and train on your own dataset by following the [Create a dataset for training](create_dataset) guide. Set the environment variable `DATASET_NAME` to the name of the dataset on the Hub or if you're training on your own files, set the environment variable `TRAIN_DIR` to a path to your dataset.
+You'll train on the [Naruto BLIP captions](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) dataset to generate your own Naruto characters, but you can also create and train on your own dataset by following the [Create a dataset for training](create_dataset) guide. Set the environment variable `DATASET_NAME` to the name of the dataset on the Hub or if you're training on your own files, set the environment variable `TRAIN_DIR` to a path to your dataset.
If youโre training on more than one GPU, add the `--multi_gpu` parameter to the `accelerate launch` command.
@@ -219,7 +219,7 @@ To monitor training progress with Weights & Biases, add the `--report_to=wandb`
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_prior.py \
--dataset_name=$DATASET_NAME \
@@ -232,17 +232,17 @@ accelerate launch --mixed_precision="fp16" train_text_to_image_prior.py \
--checkpoints_total_limit=3 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
- --validation_prompts="A robot pokemon, 4k photo" \
+ --validation_prompts="A robot naruto, 4k photo" \
--report_to="wandb" \
--push_to_hub \
- --output_dir="kandi2-prior-pokemon-model"
+ --output_dir="kandi2-prior-naruto-model"
```
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_decoder.py \
--dataset_name=$DATASET_NAME \
@@ -256,10 +256,10 @@ accelerate launch --mixed_precision="fp16" train_text_to_image_decoder.py \
--checkpoints_total_limit=3 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
- --validation_prompts="A robot pokemon, 4k photo" \
+ --validation_prompts="A robot naruto, 4k photo" \
--report_to="wandb" \
--push_to_hub \
- --output_dir="kandi2-decoder-pokemon-model"
+ --output_dir="kandi2-decoder-naruto-model"
```
@@ -279,7 +279,7 @@ prior_components = {"prior_" + k: v for k,v in prior_pipeline.components.items()
pipeline = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", **prior_components, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
-prompt="A robot pokemon, 4k photo"
+prompt="A robot naruto, 4k photo"
image = pipeline(prompt=prompt, negative_prompt=negative_prompt).images[0]
```
@@ -299,7 +299,7 @@ import torch
pipeline = AutoPipelineForText2Image.from_pretrained("path/to/saved/model", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
-prompt="A robot pokemon, 4k photo"
+prompt="A robot naruto, 4k photo"
image = pipeline(prompt=prompt).images[0]
```
@@ -313,7 +313,7 @@ unet = UNet2DConditionModel.from_pretrained("path/to/saved/model" + "/checkpoint
pipeline = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", unet=unet, torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
-image = pipeline(prompt="A robot pokemon, 4k photo").images[0]
+image = pipeline(prompt="A robot naruto, 4k photo").images[0]
```
diff --git a/docs/source/en/training/lora.md b/docs/source/en/training/lora.md
index 78ac8a140e7c..737e6f0dfc32 100644
--- a/docs/source/en/training/lora.md
+++ b/docs/source/en/training/lora.md
@@ -170,7 +170,7 @@ Aside from setting up the LoRA layers, the training script is more or less the s
Once you've made all your changes or you're okay with the default configuration, you're ready to launch the training script! ๐
-Let's train on the [Pokรฉmon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate our own Pokรฉmon. Set the environment variables `MODEL_NAME` and `DATASET_NAME` to the model and dataset respectively. You should also specify where to save the model in `OUTPUT_DIR`, and the name of the model to save to on the Hub with `HUB_MODEL_ID`. The script creates and saves the following files to your repository:
+Let's train on the [Naruto BLIP captions](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) dataset to generate your own Naruto characters. Set the environment variables `MODEL_NAME` and `DATASET_NAME` to the model and dataset respectively. You should also specify where to save the model in `OUTPUT_DIR`, and the name of the model to save to on the Hub with `HUB_MODEL_ID`. The script creates and saves the following files to your repository:
- saved model checkpoints
- `pytorch_lora_weights.safetensors` (the trained LoRA weights)
@@ -185,9 +185,9 @@ A full training run takes ~5 hours on a 2080 Ti GPU with 11GB of VRAM.
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
-export OUTPUT_DIR="/sddata/finetune/lora/pokemon"
-export HUB_MODEL_ID="pokemon-lora"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export OUTPUT_DIR="/sddata/finetune/lora/naruto"
+export HUB_MODEL_ID="naruto-lora"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -208,7 +208,7 @@ accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \
--hub_model_id=${HUB_MODEL_ID} \
--report_to=wandb \
--checkpointing_steps=500 \
- --validation_prompt="A pokemon with blue eyes." \
+ --validation_prompt="A naruto with blue eyes." \
--seed=1337
```
@@ -220,7 +220,7 @@ import torch
pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("path/to/lora/model", weight_name="pytorch_lora_weights.safetensors")
-image = pipeline("A pokemon with blue eyes").images[0]
+image = pipeline("A naruto with blue eyes").images[0]
```
## Next steps
diff --git a/docs/source/en/training/sdxl.md b/docs/source/en/training/sdxl.md
index 0e51e720b48c..78178047d9fd 100644
--- a/docs/source/en/training/sdxl.md
+++ b/docs/source/en/training/sdxl.md
@@ -176,7 +176,7 @@ If you want to learn more about how the training loop works, check out the [Unde
Once youโve made all your changes or youโre okay with the default configuration, youโre ready to launch the training script! ๐
-Letโs train on the [Pokรฉmon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate your own Pokรฉmon. Set the environment variables `MODEL_NAME` and `DATASET_NAME` to the model and the dataset (either from the Hub or a local path). You should also specify a VAE other than the SDXL VAE (either from the Hub or a local path) with `VAE_NAME` to avoid numerical instabilities.
+Letโs train on the [Naruto BLIP captions](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) dataset to generate your own Naruto characters. Set the environment variables `MODEL_NAME` and `DATASET_NAME` to the model and the dataset (either from the Hub or a local path). You should also specify a VAE other than the SDXL VAE (either from the Hub or a local path) with `VAE_NAME` to avoid numerical instabilities.
@@ -187,7 +187,7 @@ To monitor training progress with Weights & Biases, add the `--report_to=wandb`
```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export VAE_NAME="madebyollin/sdxl-vae-fp16-fix"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch train_text_to_image_sdxl.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -211,7 +211,7 @@ accelerate launch train_text_to_image_sdxl.py \
--validation_prompt="a cute Sundar Pichai creature" \
--validation_epochs 5 \
--checkpointing_steps=5000 \
- --output_dir="sdxl-pokemon-model" \
+ --output_dir="sdxl-naruto-model" \
--push_to_hub
```
@@ -226,9 +226,9 @@ import torch
pipeline = DiffusionPipeline.from_pretrained("path/to/your/model", torch_dtype=torch.float16).to("cuda")
-prompt = "A pokemon with green eyes and red legs."
+prompt = "A naruto with green eyes and red legs."
image = pipeline(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
-image.save("pokemon.png")
+image.save("naruto.png")
```
@@ -244,11 +244,11 @@ import torch_xla.core.xla_model as xm
device = xm.xla_device()
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to(device)
-prompt = "A pokemon with green eyes and red legs."
+prompt = "A naruto with green eyes and red legs."
start = time()
image = pipeline(prompt, num_inference_steps=inference_steps).images[0]
print(f'Compilation time is {time()-start} sec')
-image.save("pokemon.png")
+image.save("naruto.png")
start = time()
image = pipeline(prompt, num_inference_steps=inference_steps).images[0]
diff --git a/docs/source/en/training/text2image.md b/docs/source/en/training/text2image.md
index d5c772c9db86..f69e9a710e8f 100644
--- a/docs/source/en/training/text2image.md
+++ b/docs/source/en/training/text2image.md
@@ -158,7 +158,7 @@ Once you've made all your changes or you're okay with the default configuration,
-Let's train on the [Pokรฉmon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate your own Pokรฉmon. Set the environment variables `MODEL_NAME` and `dataset_name` to the model and the dataset (either from the Hub or a local path). If you're training on more than one GPU, add the `--multi_gpu` parameter to the `accelerate launch` command.
+Let's train on the [Naruto BLIP captions](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) dataset to generate your own Naruto characters. Set the environment variables `MODEL_NAME` and `dataset_name` to the model and the dataset (either from the Hub or a local path). If you're training on more than one GPU, add the `--multi_gpu` parameter to the `accelerate launch` command.
@@ -168,7 +168,7 @@ To train on a local dataset, set the `TRAIN_DIR` and `OUTPUT_DIR` environment va
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
-export dataset_name="lambdalabs/pokemon-blip-captions"
+export dataset_name="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -183,7 +183,7 @@ accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--max_grad_norm=1 \
--enable_xformers_memory_efficient_attention
--lr_scheduler="constant" --lr_warmup_steps=0 \
- --output_dir="sd-pokemon-model" \
+ --output_dir="sd-naruto-model" \
--push_to_hub
```
@@ -202,7 +202,7 @@ To train on a local dataset, set the `TRAIN_DIR` and `OUTPUT_DIR` environment va
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
-export dataset_name="lambdalabs/pokemon-blip-captions"
+export dataset_name="lambdalabs/naruto-blip-captions"
python train_text_to_image_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -212,7 +212,7 @@ python train_text_to_image_flax.py \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
- --output_dir="sd-pokemon-model" \
+ --output_dir="sd-naruto-model" \
--push_to_hub
```
@@ -231,7 +231,7 @@ import torch
pipeline = StableDiffusionPipeline.from_pretrained("path/to/saved_model", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
image = pipeline(prompt="yoda").images[0]
-image.save("yoda-pokemon.png")
+image.save("yoda-naruto.png")
```
@@ -246,7 +246,7 @@ from diffusers import FlaxStableDiffusionPipeline
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained("path/to/saved_model", dtype=jax.numpy.bfloat16)
-prompt = "yoda pokemon"
+prompt = "yoda naruto"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
@@ -261,7 +261,7 @@ prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
-image.save("yoda-pokemon.png")
+image.save("yoda-naruto.png")
```
diff --git a/docs/source/en/training/wuerstchen.md b/docs/source/en/training/wuerstchen.md
index c8d2842eb833..cd190639b865 100644
--- a/docs/source/en/training/wuerstchen.md
+++ b/docs/source/en/training/wuerstchen.md
@@ -131,7 +131,7 @@ If you want to learn more about how the training loop works, check out the [Unde
Once youโve made all your changes or youโre okay with the default configuration, youโre ready to launch the training script! ๐
-Set the `DATASET_NAME` environment variable to the dataset name from the Hub. This guide uses the [Pokรฉmon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset, but you can create and train on your own datasets as well (see the [Create a dataset for training](create_dataset) guide).
+Set the `DATASET_NAME` environment variable to the dataset name from the Hub. This guide uses the [Naruto BLIP captions](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) dataset, but you can create and train on your own datasets as well (see the [Create a dataset for training](create_dataset) guide).
@@ -140,7 +140,7 @@ To monitor training progress with Weights & Biases, add the `--report_to=wandb`
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch train_text_to_image_prior.py \
--mixed_precision="fp16" \
@@ -156,10 +156,10 @@ accelerate launch train_text_to_image_prior.py \
--checkpoints_total_limit=3 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
- --validation_prompts="A robot pokemon, 4k photo" \
+ --validation_prompts="A robot naruto, 4k photo" \
--report_to="wandb" \
--push_to_hub \
- --output_dir="wuerstchen-prior-pokemon-model"
+ --output_dir="wuerstchen-prior-naruto-model"
```
Once training is complete, you can use your newly trained model for inference!
@@ -171,7 +171,7 @@ from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
pipeline = AutoPipelineForText2Image.from_pretrained("path/to/saved/model", torch_dtype=torch.float16).to("cuda")
-caption = "A cute bird pokemon holding a shield"
+caption = "A cute bird naruto holding a shield"
images = pipeline(
caption,
width=1024,
diff --git a/docs/source/ko/training/lora.md b/docs/source/ko/training/lora.md
index 5bb8a1e69be4..e9c690d80652 100644
--- a/docs/source/ko/training/lora.md
+++ b/docs/source/ko/training/lora.md
@@ -49,15 +49,15 @@ huggingface-cli login
### ํ์ต[[dreambooth-training]]
-[Pokรฉmon BLIP ์บก์
](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) ๋ฐ์ดํฐ์
์ผ๋ก [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)๋ฅผ ํ์ธํ๋ํด ๋๋ง์ ํฌ์ผ๋ชฌ์ ์์ฑํด ๋ณด๊ฒ ์ต๋๋ค.
+[Naruto BLIP ์บก์
](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) ๋ฐ์ดํฐ์
์ผ๋ก [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)๋ฅผ ํ์ธํ๋ํด ๋๋ง์ ํฌ์ผ๋ชฌ์ ์์ฑํด ๋ณด๊ฒ ์ต๋๋ค.
์์ํ๋ ค๋ฉด `MODEL_NAME` ๋ฐ `DATASET_NAME` ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ด ์๋์ง ํ์ธํ์ญ์์ค. `OUTPUT_DIR` ๋ฐ `HUB_MODEL_ID` ๋ณ์๋ ์ ํ ์ฌํญ์ด๋ฉฐ ํ๋ธ์์ ๋ชจ๋ธ์ ์ ์ฅํ ์์น๋ฅผ ์ง์ ํฉ๋๋ค.
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
-export OUTPUT_DIR="/sddata/finetune/lora/pokemon"
-export HUB_MODEL_ID="pokemon-lora"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export OUTPUT_DIR="/sddata/finetune/lora/naruto"
+export HUB_MODEL_ID="naruto-lora"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
```
ํ์ต์ ์์ํ๊ธฐ ์ ์ ์์์ผ ํ ๋ช ๊ฐ์ง ํ๋๊ทธ๊ฐ ์์ต๋๋ค.
diff --git a/docs/source/ko/training/text2image.md b/docs/source/ko/training/text2image.md
index f2ad3bb0719e..8a0463b497f4 100644
--- a/docs/source/ko/training/text2image.md
+++ b/docs/source/ko/training/text2image.md
@@ -73,12 +73,12 @@ xFormers๋ Flax์ ์ฌ์ฉํ ์ ์์ต๋๋ค.
-๋ค์๊ณผ ๊ฐ์ด [Pokรฉmon BLIP ์บก์
](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) ๋ฐ์ดํฐ์
์์ ํ์ธํ๋ ์คํ์ ์ํด [PyTorch ํ์ต ์คํฌ๋ฆฝํธ](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py)๋ฅผ ์คํํฉ๋๋ค:
+๋ค์๊ณผ ๊ฐ์ด [Naruto BLIP ์บก์
](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) ๋ฐ์ดํฐ์
์์ ํ์ธํ๋ ์คํ์ ์ํด [PyTorch ํ์ต ์คํฌ๋ฆฝํธ](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py)๋ฅผ ์คํํฉ๋๋ค:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
-export dataset_name="lambdalabs/pokemon-blip-captions"
+export dataset_name="lambdalabs/naruto-blip-captions"
accelerate launch train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -93,7 +93,7 @@ accelerate launch train_text_to_image.py \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
- --output_dir="sd-pokemon-model"
+ --output_dir="sd-naruto-model"
```
์์ฒด ๋ฐ์ดํฐ์
์ผ๋ก ํ์ธํ๋ํ๋ ค๋ฉด ๐ค [Datasets](https://huggingface.co/docs/datasets/index)์์ ์๊ตฌํ๋ ํ์์ ๋ฐ๋ผ ๋ฐ์ดํฐ์
์ ์ค๋นํ์ธ์. [๋ฐ์ดํฐ์
์ ํ๋ธ์ ์
๋ก๋](https://huggingface.co/docs/datasets/image_dataset#upload-dataset-to-the-hub)ํ๊ฑฐ๋ [ํ์ผ๋ค์ด ์๋ ๋ก์ปฌ ํด๋๋ฅผ ์ค๋น](https ://huggingface.co/docs/datasets/image_dataset#imagefolder)ํ ์ ์์ต๋๋ค.
@@ -136,7 +136,7 @@ pip install -U -r requirements_flax.txt
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
-export dataset_name="lambdalabs/pokemon-blip-captions"
+export dataset_name="lambdalabs/naruto-blip-captions"
python train_text_to_image_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -146,7 +146,7 @@ python train_text_to_image_flax.py \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
- --output_dir="sd-pokemon-model"
+ --output_dir="sd-naruto-model"
```
์์ฒด ๋ฐ์ดํฐ์
์ผ๋ก ํ์ธํ๋ํ๋ ค๋ฉด ๐ค [Datasets](https://huggingface.co/docs/datasets/index)์์ ์๊ตฌํ๋ ํ์์ ๋ฐ๋ผ ๋ฐ์ดํฐ์
์ ์ค๋นํ์ธ์. [๋ฐ์ดํฐ์
์ ํ๋ธ์ ์
๋ก๋](https://huggingface.co/docs/datasets/image_dataset#upload-dataset-to-the-hub)ํ๊ฑฐ๋ [ํ์ผ๋ค์ด ์๋ ๋ก์ปฌ ํด๋๋ฅผ ์ค๋น](https ://huggingface.co/docs/datasets/image_dataset#imagefolder)ํ ์ ์์ต๋๋ค.
@@ -166,7 +166,7 @@ python train_text_to_image_flax.py \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
- --output_dir="sd-pokemon-model"
+ --output_dir="sd-naruto-model"
```
@@ -189,7 +189,7 @@ pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.flo
pipe.to("cuda")
image = pipe(prompt="yoda").images[0]
-image.save("yoda-pokemon.png")
+image.save("yoda-naruto.png")
```
@@ -203,7 +203,7 @@ from diffusers import FlaxStableDiffusionPipeline
model_path = "path_to_saved_model"
pipe, params = FlaxStableDiffusionPipeline.from_pretrained(model_path, dtype=jax.numpy.bfloat16)
-prompt = "yoda pokemon"
+prompt = "yoda naruto"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
@@ -218,7 +218,7 @@ prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
-image.save("yoda-pokemon.png")
+image.save("yoda-naruto.png")
```
\ No newline at end of file
diff --git a/docs/source/ko/training/unconditional_training.md b/docs/source/ko/training/unconditional_training.md
index d0c200ef2daa..de9ae39a7a76 100644
--- a/docs/source/ko/training/unconditional_training.md
+++ b/docs/source/ko/training/unconditional_training.md
@@ -103,13 +103,13 @@ accelerate launch train_unconditional.py \
-[Pokemon](https://huggingface.co/datasets/huggan/pokemon) ๋ฐ์ดํฐ์
์ ์ฌ์ฉํ ๊ฒฝ์ฐ:
+[Naruto](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) ๋ฐ์ดํฐ์
์ ์ฌ์ฉํ ๊ฒฝ์ฐ:
```bash
accelerate launch train_unconditional.py \
- --dataset_name="huggan/pokemon" \
+ --dataset_name="lambdalabs/naruto-blip-captions" \
--resolution=64 \
- --output_dir="ddpm-ema-pokemon-64" \
+ --output_dir="ddpm-ema-naruto-64" \
--train_batch_size=16 \
--num_epochs=100 \
--gradient_accumulation_steps=1 \
@@ -129,9 +129,9 @@ accelerate launch train_unconditional.py \
```bash
accelerate launch --mixed_precision="fp16" --multi_gpu train_unconditional.py \
- --dataset_name="huggan/pokemon" \
+ --dataset_name="lambdalabs/naruto-blip-captions" \
--resolution=64 --center_crop --random_flip \
- --output_dir="ddpm-ema-pokemon-64" \
+ --output_dir="ddpm-ema-naruto-64" \
--train_batch_size=16 \
--num_epochs=100 \
--gradient_accumulation_steps=1 \
diff --git a/examples/consistency_distillation/README_sdxl.md b/examples/consistency_distillation/README_sdxl.md
index d3abaa4ce175..6bd84727cf31 100644
--- a/examples/consistency_distillation/README_sdxl.md
+++ b/examples/consistency_distillation/README_sdxl.md
@@ -115,11 +115,11 @@ accelerate launch train_lcm_distill_lora_sdxl_wds.py \
We provide another version for LCM LoRA SDXL that follows best practices of `peft` and leverages the `datasets` library for quick experimentation. The script doesn't load two UNets unlike `train_lcm_distill_lora_sdxl_wds.py` which reduces the memory requirements quite a bit.
-Below is an example training command that trains an LCM LoRA on the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions):
+Below is an example training command that trains an LCM LoRA on the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions):
```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
export VAE_PATH="madebyollin/sdxl-vae-fp16-fix"
accelerate launch train_lcm_distill_lora_sdxl.py \
diff --git a/examples/consistency_distillation/train_lcm_distill_lora_sdxl.py b/examples/consistency_distillation/train_lcm_distill_lora_sdxl.py
index 9405c238f937..56f83f47b84c 100644
--- a/examples/consistency_distillation/train_lcm_distill_lora_sdxl.py
+++ b/examples/consistency_distillation/train_lcm_distill_lora_sdxl.py
@@ -71,7 +71,7 @@
logger = get_logger(__name__)
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/kandinsky2_2/text_to_image/README.md b/examples/kandinsky2_2/text_to_image/README.md
index 6e5a1835593f..d27ba1a21f0c 100644
--- a/examples/kandinsky2_2/text_to_image/README.md
+++ b/examples/kandinsky2_2/text_to_image/README.md
@@ -57,7 +57,7 @@ To disable wandb logging, remove the `--report_to=="wandb"` and `--validation_pr
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_decoder.py \
--dataset_name=$DATASET_NAME \
@@ -139,7 +139,7 @@ You can fine-tune the Kandinsky prior model with `train_text_to_image_prior.py`
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_prior.py \
--dataset_name=$DATASET_NAME \
@@ -183,7 +183,7 @@ If you want to use a fine-tuned decoder checkpoint along with your fine-tuned pr
for running distributed training with `accelerate`. Here is an example command:
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" --multi_gpu train_text_to_image_decoder.py \
--dataset_name=$DATASET_NAME \
@@ -227,13 +227,13 @@ on consumer GPUs like Tesla T4, Tesla V100.
### Training
-First, you need to set up your development environment as explained in the [installation](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions).
+First, you need to set up your development environment as explained in the [installation](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions).
#### Train decoder
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_decoder_lora.py \
--dataset_name=$DATASET_NAME --caption_column="text" \
@@ -252,7 +252,7 @@ accelerate launch --mixed_precision="fp16" train_text_to_image_decoder_lora.py \
#### Train prior
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_prior_lora.py \
--dataset_name=$DATASET_NAME --caption_column="text" \
diff --git a/examples/kandinsky2_2/text_to_image/train_text_to_image_lora_prior.py b/examples/kandinsky2_2/text_to_image/train_text_to_image_lora_prior.py
index e169cf92beb9..f6f3896aaa12 100644
--- a/examples/kandinsky2_2/text_to_image/train_text_to_image_lora_prior.py
+++ b/examples/kandinsky2_2/text_to_image/train_text_to_image_lora_prior.py
@@ -332,7 +332,7 @@ def parse_args():
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py b/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py
index bd95aed2939c..54a4d0a397b4 100644
--- a/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py
+++ b/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py
@@ -56,7 +56,7 @@
logger = get_logger(__name__, log_level="INFO")
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/research_projects/lora/README.md b/examples/research_projects/lora/README.md
index b5d72403166f..14cd6cd9be56 100644
--- a/examples/research_projects/lora/README.md
+++ b/examples/research_projects/lora/README.md
@@ -19,7 +19,7 @@ on consumer GPUs like Tesla T4, Tesla V100.
### Training
-First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Stable Diffusion v1-4](https://hf.co/CompVis/stable-diffusion-v1-4) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions).
+First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Stable Diffusion v1-4](https://hf.co/CompVis/stable-diffusion-v1-4) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions).
**___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___**
@@ -27,7 +27,7 @@ First, you need to set up your development environment as is explained in the [i
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
```
For this example we want to directly store the trained LoRA embeddings on the Hub, so
diff --git a/examples/research_projects/lora/train_text_to_image_lora.py b/examples/research_projects/lora/train_text_to_image_lora.py
index cf00bf270057..1ebc1422b064 100644
--- a/examples/research_projects/lora/train_text_to_image_lora.py
+++ b/examples/research_projects/lora/train_text_to_image_lora.py
@@ -387,7 +387,7 @@ def parse_args():
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/research_projects/onnxruntime/text_to_image/README.md b/examples/research_projects/onnxruntime/text_to_image/README.md
index 48bce2065444..8b499795746c 100644
--- a/examples/research_projects/onnxruntime/text_to_image/README.md
+++ b/examples/research_projects/onnxruntime/text_to_image/README.md
@@ -55,7 +55,7 @@ The command to train a DDPM UNetCondition model on the Pokemon dataset with onnx
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
-export dataset_name="lambdalabs/pokemon-blip-captions"
+export dataset_name="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name \
diff --git a/examples/research_projects/onnxruntime/text_to_image/train_text_to_image.py b/examples/research_projects/onnxruntime/text_to_image/train_text_to_image.py
index ee61f033d34d..126a10b4f9e9 100644
--- a/examples/research_projects/onnxruntime/text_to_image/train_text_to_image.py
+++ b/examples/research_projects/onnxruntime/text_to_image/train_text_to_image.py
@@ -59,7 +59,7 @@
logger = get_logger(__name__, log_level="INFO")
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image.py b/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image.py
index 0f4cc6c50b5e..d3bf95305dad 100644
--- a/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image.py
+++ b/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image.py
@@ -61,7 +61,7 @@
logger = get_logger(__name__, log_level="INFO")
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_lora.py b/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_lora.py
index f22519b02e2b..a4b4d69bb892 100644
--- a/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_lora.py
+++ b/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_lora.py
@@ -406,7 +406,7 @@ def parse_args():
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_lora_sdxl.py b/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_lora_sdxl.py
index e5ff9d39e8ba..d7f2dcaa3442 100644
--- a/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_lora_sdxl.py
+++ b/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_lora_sdxl.py
@@ -468,7 +468,7 @@ def parse_args(input_args=None):
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_sdxl.py b/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_sdxl.py
index 1dac573fce4c..a056bcfc8cb1 100644
--- a/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_sdxl.py
+++ b/examples/research_projects/scheduled_huber_loss_training/text_to_image/train_text_to_image_sdxl.py
@@ -60,7 +60,7 @@
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/text_to_image/README.md b/examples/text_to_image/README.md
index fd6e50bc3710..9a8410604878 100644
--- a/examples/text_to_image/README.md
+++ b/examples/text_to_image/README.md
@@ -57,7 +57,7 @@ With `gradient_checkpointing` and `mixed_precision` it should be possible to fin
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -136,7 +136,7 @@ for running distributed training with `accelerate`. Here is an example command:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" --multi_gpu train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -192,7 +192,7 @@ on consumer GPUs like Tesla T4, Tesla V100.
### Training
-First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Stable Diffusion v1-4](https://hf.co/CompVis/stable-diffusion-v1-4) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions).
+First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Stable Diffusion v1-4](https://hf.co/CompVis/stable-diffusion-v1-4) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions).
**___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___**
@@ -200,7 +200,7 @@ First, you need to set up your development environment as is explained in the [i
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
```
For this example we want to directly store the trained LoRA embeddings on the Hub, so
@@ -282,7 +282,7 @@ pip install -U -r requirements_flax.txt
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
python train_text_to_image_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
diff --git a/examples/text_to_image/README_sdxl.md b/examples/text_to_image/README_sdxl.md
index 349feef5008e..35ea0091c4f3 100644
--- a/examples/text_to_image/README_sdxl.md
+++ b/examples/text_to_image/README_sdxl.md
@@ -52,7 +52,7 @@ Note also that we use PEFT library as backend for LoRA training, make sure to ha
```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export VAE_NAME="madebyollin/sdxl-vae-fp16-fix"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch train_text_to_image_sdxl.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -76,7 +76,7 @@ accelerate launch train_text_to_image_sdxl.py \
**Notes**:
-* The `train_text_to_image_sdxl.py` script pre-computes text embeddings and the VAE encodings and keeps them in memory. While for smaller datasets like [`lambdalabs/pokemon-blip-captions`](https://hf.co/datasets/lambdalabs/pokemon-blip-captions), it might not be a problem, it can definitely lead to memory problems when the script is used on a larger dataset. For those purposes, you would want to serialize these pre-computed representations to disk separately and load them during the fine-tuning process. Refer to [this PR](https://github.com/huggingface/diffusers/pull/4505) for a more in-depth discussion.
+* The `train_text_to_image_sdxl.py` script pre-computes text embeddings and the VAE encodings and keeps them in memory. While for smaller datasets like [`lambdalabs/naruto-blip-captions`](https://hf.co/datasets/lambdalabs/naruto-blip-captions), it might not be a problem, it can definitely lead to memory problems when the script is used on a larger dataset. For those purposes, you would want to serialize these pre-computed representations to disk separately and load them during the fine-tuning process. Refer to [this PR](https://github.com/huggingface/diffusers/pull/4505) for a more in-depth discussion.
* The training script is compute-intensive and may not run on a consumer GPU like Tesla T4.
* The training command shown above performs intermediate quality validation in between the training epochs and logs the results to Weights and Biases. `--report_to`, `--validation_prompt`, and `--validation_epochs` are the relevant CLI arguments here.
* SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
@@ -142,14 +142,14 @@ on consumer GPUs like Tesla T4, Tesla V100.
### Training
-First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables and, optionally, the `VAE_NAME` variable. Here, we will use [Stable Diffusion XL 1.0-base](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions).
+First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables and, optionally, the `VAE_NAME` variable. Here, we will use [Stable Diffusion XL 1.0-base](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions).
**___Note: It is quite useful to monitor the training progress by regularly generating sample images during training. [Weights and Biases](https://docs.wandb.ai/quickstart) is a nice solution to easily see generating images during training. All you need to do is to run `pip install wandb` before training to automatically log images.___**
```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export VAE_NAME="madebyollin/sdxl-vae-fp16-fix"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
```
For this example we want to directly store the trained LoRA embeddings on the Hub, so
@@ -219,7 +219,7 @@ You need to save the mentioned configuration as an `accelerate_config.yaml` file
```shell
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export VAE_NAME="madebyollin/sdxl-vae-fp16-fix"
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
export ACCELERATE_CONFIG_FILE="your accelerate_config.yaml"
accelerate launch --config_file $ACCELERATE_CONFIG_FILE train_text_to_image_lora_sdxl.py \
diff --git a/examples/text_to_image/train_text_to_image.py b/examples/text_to_image/train_text_to_image.py
index aa704ba8ca38..13ee0f2cc4c7 100644
--- a/examples/text_to_image/train_text_to_image.py
+++ b/examples/text_to_image/train_text_to_image.py
@@ -62,7 +62,7 @@
logger = get_logger(__name__, log_level="INFO")
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/text_to_image/train_text_to_image_flax.py b/examples/text_to_image/train_text_to_image_flax.py
index 557923c52e00..c3a08a90b4e5 100644
--- a/examples/text_to_image/train_text_to_image_flax.py
+++ b/examples/text_to_image/train_text_to_image_flax.py
@@ -250,7 +250,7 @@ def parse_args():
dataset_name_mapping = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/text_to_image/train_text_to_image_lora.py b/examples/text_to_image/train_text_to_image_lora.py
index 7164ac909cb2..37b10cfd1bad 100644
--- a/examples/text_to_image/train_text_to_image_lora.py
+++ b/examples/text_to_image/train_text_to_image_lora.py
@@ -387,7 +387,7 @@ def parse_args():
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/text_to_image/train_text_to_image_lora_sdxl.py b/examples/text_to_image/train_text_to_image_lora_sdxl.py
index 3604e755c62a..c9883252d14b 100644
--- a/examples/text_to_image/train_text_to_image_lora_sdxl.py
+++ b/examples/text_to_image/train_text_to_image_lora_sdxl.py
@@ -454,7 +454,7 @@ def parse_args(input_args=None):
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/text_to_image/train_text_to_image_sdxl.py b/examples/text_to_image/train_text_to_image_sdxl.py
index 88adbb995531..90602ad597a9 100644
--- a/examples/text_to_image/train_text_to_image_sdxl.py
+++ b/examples/text_to_image/train_text_to_image_sdxl.py
@@ -61,7 +61,7 @@
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/wuerstchen/text_to_image/README.md b/examples/wuerstchen/text_to_image/README.md
index d655259088e4..7583296e66d1 100644
--- a/examples/wuerstchen/text_to_image/README.md
+++ b/examples/wuerstchen/text_to_image/README.md
@@ -37,7 +37,7 @@ You can fine-tune the Wรผrstchen prior model with the `train_text_to_image_prior
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch train_text_to_image_prior.py \
--mixed_precision="fp16" \
@@ -72,10 +72,10 @@ In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-de
### Prior Training
-First, you need to set up your development environment as explained in the [installation](#Running-locally-with-PyTorch) section. Make sure to set the `DATASET_NAME` environment variable. Here, we will use the [Pokemon captions dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions).
+First, you need to set up your development environment as explained in the [installation](#Running-locally-with-PyTorch) section. Make sure to set the `DATASET_NAME` environment variable. Here, we will use the [Pokemon captions dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions).
```bash
-export DATASET_NAME="lambdalabs/pokemon-blip-captions"
+export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch train_text_to_image_lora_prior.py \
--mixed_precision="fp16" \
diff --git a/examples/wuerstchen/text_to_image/train_text_to_image_lora_prior.py b/examples/wuerstchen/text_to_image/train_text_to_image_lora_prior.py
index 76eaf6423960..79f7d8576ff4 100644
--- a/examples/wuerstchen/text_to_image/train_text_to_image_lora_prior.py
+++ b/examples/wuerstchen/text_to_image/train_text_to_image_lora_prior.py
@@ -55,7 +55,7 @@
logger = get_logger(__name__, log_level="INFO")
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}
diff --git a/examples/wuerstchen/text_to_image/train_text_to_image_prior.py b/examples/wuerstchen/text_to_image/train_text_to_image_prior.py
index 49cc5d26072d..3e0acfdaf519 100644
--- a/examples/wuerstchen/text_to_image/train_text_to_image_prior.py
+++ b/examples/wuerstchen/text_to_image/train_text_to_image_prior.py
@@ -56,7 +56,7 @@
logger = get_logger(__name__, log_level="INFO")
DATASET_NAME_MAPPING = {
- "lambdalabs/pokemon-blip-captions": ("image", "text"),
+ "lambdalabs/naruto-blip-captions": ("image", "text"),
}