diff --git a/examples/dreambooth/train_dreambooth.py b/examples/dreambooth/train_dreambooth.py index f652b1e79bcc..532e134a6153 100644 --- a/examples/dreambooth/train_dreambooth.py +++ b/examples/dreambooth/train_dreambooth.py @@ -55,6 +55,7 @@ from diffusers.training_utils import compute_snr from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available +from diffusers.utils.torch_utils import is_compiled_module if is_wandb_available(): @@ -129,15 +130,12 @@ def log_validation( if vae is not None: pipeline_args["vae"] = vae - if text_encoder is not None: - text_encoder = accelerator.unwrap_model(text_encoder) - # create pipeline (note: unet and vae are loaded again in float32) pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, tokenizer=tokenizer, text_encoder=text_encoder, - unet=accelerator.unwrap_model(unet), + unet=unet, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, @@ -794,6 +792,7 @@ def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_atte prompt_embeds = text_encoder( text_input_ids, attention_mask=attention_mask, + return_dict=False, ) prompt_embeds = prompt_embeds[0] @@ -931,11 +930,16 @@ def main(args): args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) + def unwrap_model(model): + model = accelerator.unwrap_model(model) + model = model._orig_mod if is_compiled_module(model) else model + return model + # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: for model in models: - sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder" + sub_dir = "unet" if isinstance(model, type(unwrap_model(unet))) else "text_encoder" model.save_pretrained(os.path.join(output_dir, sub_dir)) # make sure to pop weight so that corresponding model is not saved again @@ -946,7 +950,7 @@ def load_model_hook(models, input_dir): # pop models so that they are not loaded again model = models.pop() - if isinstance(model, type(accelerator.unwrap_model(text_encoder))): + if isinstance(model, type(unwrap_model(text_encoder))): # load transformers style into model load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder") model.config = load_model.config @@ -991,15 +995,12 @@ def load_model_hook(models, input_dir): " doing mixed precision training. copy of the weights should still be float32." ) - if accelerator.unwrap_model(unet).dtype != torch.float32: - raise ValueError( - f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}" - ) + if unwrap_model(unet).dtype != torch.float32: + raise ValueError(f"Unet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}") - if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32: + if args.train_text_encoder and unwrap_model(text_encoder).dtype != torch.float32: raise ValueError( - f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}." - f" {low_precision_error_string}" + f"Text encoder loaded as datatype {unwrap_model(text_encoder).dtype}." f" {low_precision_error_string}" ) # Enable TF32 for faster training on Ampere GPUs, @@ -1246,7 +1247,7 @@ def compute_text_embeddings(prompt): text_encoder_use_attention_mask=args.text_encoder_use_attention_mask, ) - if accelerator.unwrap_model(unet).config.in_channels == channels * 2: + if unwrap_model(unet).config.in_channels == channels * 2: noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1) if args.class_labels_conditioning == "timesteps": @@ -1256,8 +1257,8 @@ def compute_text_embeddings(prompt): # Predict the noise residual model_pred = unet( - noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels - ).sample + noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels, return_dict=False + )[0] if model_pred.shape[1] == 6: model_pred, _ = torch.chunk(model_pred, 2, dim=1) @@ -1350,9 +1351,9 @@ def compute_text_embeddings(prompt): if args.validation_prompt is not None and global_step % args.validation_steps == 0: images = log_validation( - text_encoder, + unwrap_model(text_encoder) if text_encoder is not None else text_encoder, tokenizer, - unet, + unwrap_model(unet), vae, args, accelerator, @@ -1375,14 +1376,14 @@ def compute_text_embeddings(prompt): pipeline_args = {} if text_encoder is not None: - pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder) + pipeline_args["text_encoder"] = unwrap_model(text_encoder) if args.skip_save_text_encoder: pipeline_args["text_encoder"] = None pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, - unet=accelerator.unwrap_model(unet), + unet=unwrap_model(unet), revision=args.revision, variant=args.variant, **pipeline_args,