diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py index 49ee3ee6af6b..e3794939e25e 100644 --- a/src/diffusers/models/__init__.py +++ b/src/diffusers/models/__init__.py @@ -33,8 +33,8 @@ _import_structure["consistency_decoder_vae"] = ["ConsistencyDecoderVAE"] _import_structure["controlnet"] = ["ControlNetModel"] _import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"] - _import_structure["modeling_utils"] = ["ModelMixin"] _import_structure["embeddings"] = ["ImageProjection"] + _import_structure["modeling_utils"] = ["ModelMixin"] _import_structure["prior_transformer"] = ["PriorTransformer"] _import_structure["t5_film_transformer"] = ["T5FilmDecoder"] _import_structure["transformer_2d"] = ["Transformer2DModel"] diff --git a/src/diffusers/schedulers/scheduling_euler_discrete.py b/src/diffusers/schedulers/scheduling_euler_discrete.py index cef2c4113a48..310907b3bc44 100644 --- a/src/diffusers/schedulers/scheduling_euler_discrete.py +++ b/src/diffusers/schedulers/scheduling_euler_discrete.py @@ -290,8 +290,6 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device) self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) - if sigmas.device.type == "cuda": - self.sigmas = self.sigmas.tolist() self._step_index = None def _sigma_to_t(self, sigma, log_sigmas):