diff --git a/docs/source/zh/_toctree.yml b/docs/source/zh/_toctree.yml
index 2d67d9c4a025..58f6ac09faef 100644
--- a/docs/source/zh/_toctree.yml
+++ b/docs/source/zh/_toctree.yml
@@ -4,51 +4,79 @@
- local: quicktour
title: 快速入门
- local: stable_diffusion
- title: Stable Diffusion
+ title: Effective and efficient diffusion
- local: installation
title: 安装
title: 开始
- sections:
+ - local: tutorials/tutorial_overview
+ title: Overview
+ - local: using-diffusers/write_own_pipeline
+ title: Understanding models and schedulers
- local: tutorials/basic_training
title: Train a diffusion model
title: Tutorials
- sections:
- sections:
+ - local: using-diffusers/loading_overview
+ title: Overview
- local: using-diffusers/loading
- title: Loading Pipelines, Models, and Schedulers
+ title: Load pipelines, models, and schedulers
- local: using-diffusers/schedulers
- title: Using different Schedulers
- - local: using-diffusers/configuration
- title: Configuring Pipelines, Models, and Schedulers
+ title: Load and compare different schedulers
- local: using-diffusers/custom_pipeline_overview
- title: Loading and Adding Custom Pipelines
+ title: Load community pipelines
- local: using-diffusers/kerascv
- title: Using KerasCV Stable Diffusion Checkpoints in Diffusers
+ title: Load KerasCV Stable Diffusion checkpoints
title: Loading & Hub
- sections:
+ - local: using-diffusers/pipeline_overview
+ title: Overview
- local: using-diffusers/unconditional_image_generation
- title: Unconditional Image Generation
+ title: Unconditional image generation
- local: using-diffusers/conditional_image_generation
- title: Text-to-Image Generation
+ title: Text-to-image generation
- local: using-diffusers/img2img
- title: Text-Guided Image-to-Image
+ title: Text-guided image-to-image
- local: using-diffusers/inpaint
- title: Text-Guided Image-Inpainting
+ title: Text-guided image-inpainting
- local: using-diffusers/depth2img
- title: Text-Guided Depth-to-Image
- - local: using-diffusers/controlling_generation
- title: Controlling generation
+ title: Text-guided depth-to-image
- local: using-diffusers/reusing_seeds
- title: Reusing seeds for deterministic generation
+ title: Improve image quality with deterministic generation
- local: using-diffusers/reproducibility
- title: Reproducibility
+ title: Create reproducible pipelines
- local: using-diffusers/custom_pipeline_examples
- title: Community Pipelines
+ title: Community pipelines
- local: using-diffusers/contribute_pipeline
- title: How to contribute a Pipeline
+ title: How to contribute a community pipeline
- local: using-diffusers/using_safetensors
title: Using safetensors
+ - local: using-diffusers/stable_diffusion_jax_how_to
+ title: Stable Diffusion in JAX/Flax
+ - local: using-diffusers/weighted_prompts
+ title: Weighting Prompts
title: Pipelines for Inference
+ - sections:
+ - local: training/overview
+ title: Overview
+ - local: training/unconditional_training
+ title: Unconditional image generation
+ - local: training/text_inversion
+ title: Textual Inversion
+ - local: training/dreambooth
+ title: DreamBooth
+ - local: training/text2image
+ title: Text-to-image
+ - local: training/lora
+ title: Low-Rank Adaptation of Large Language Models (LoRA)
+ - local: training/controlnet
+ title: ControlNet
+ - local: training/instructpix2pix
+ title: InstructPix2Pix Training
+ - local: training/custom_diffusion
+ title: Custom Diffusion
+ title: Training
- sections:
- local: using-diffusers/rl
title: Reinforcement Learning
@@ -59,6 +87,8 @@
title: Taking Diffusers Beyond Images
title: Using Diffusers
- sections:
+ - local: optimization/opt_overview
+ title: Overview
- local: optimization/fp16
title: Memory and Speed
- local: optimization/torch2.0
@@ -69,32 +99,26 @@
title: ONNX
- local: optimization/open_vino
title: OpenVINO
+ - local: optimization/coreml
+ title: Core ML
- local: optimization/mps
title: MPS
- local: optimization/habana
title: Habana Gaudi
+ - local: optimization/tome
+ title: Token Merging
title: Optimization/Special Hardware
-- sections:
- - local: training/overview
- title: Overview
- - local: training/unconditional_training
- title: Unconditional Image Generation
- - local: training/text_inversion
- title: Textual Inversion
- - local: training/dreambooth
- title: DreamBooth
- - local: training/text2image
- title: Text-to-image
- - local: training/lora
- title: Low-Rank Adaptation of Large Language Models (LoRA)
- title: Training
- sections:
- local: conceptual/philosophy
title: Philosophy
+ - local: using-diffusers/controlling_generation
+ title: Controlled generation
- local: conceptual/contribution
title: How to contribute?
- local: conceptual/ethical_guidelines
title: Diffusers' Ethical Guidelines
+ - local: conceptual/evaluation
+ title: Evaluating Diffusion Models
title: Conceptual Guides
- sections:
- sections:
@@ -118,6 +142,8 @@
title: AltDiffusion
- local: api/pipelines/audio_diffusion
title: Audio Diffusion
+ - local: api/pipelines/audioldm
+ title: AudioLDM
- local: api/pipelines/cycle_diffusion
title: Cycle Diffusion
- local: api/pipelines/dance_diffusion
@@ -128,6 +154,8 @@
title: DDPM
- local: api/pipelines/dit
title: DiT
+ - local: api/pipelines/if
+ title: IF
- local: api/pipelines/latent_diffusion
title: Latent Diffusion
- local: api/pipelines/paint_by_example
@@ -142,6 +170,8 @@
title: Score SDE VE
- local: api/pipelines/semantic_stable_diffusion
title: Semantic Guidance
+ - local: api/pipelines/spectrogram_diffusion
+ title: "Spectrogram Diffusion"
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
@@ -171,6 +201,8 @@
title: MultiDiffusion Panorama
- local: api/pipelines/stable_diffusion/controlnet
title: Text-to-Image Generation with ControlNet Conditioning
+ - local: api/pipelines/stable_diffusion/model_editing
+ title: Text-to-Image Model Editing
title: Stable Diffusion
- local: api/pipelines/stable_diffusion_2
title: Stable Diffusion 2
@@ -178,6 +210,10 @@
title: Stable unCLIP
- local: api/pipelines/stochastic_karras_ve
title: Stochastic Karras VE
+ - local: api/pipelines/text_to_video
+ title: Text-to-Video
+ - local: api/pipelines/text_to_video_zero
+ title: Text-to-Video Zero
- local: api/pipelines/unclip
title: UnCLIP
- local: api/pipelines/latent_diffusion_uncond
@@ -235,4 +271,4 @@
- local: api/experimental/rl
title: RL Planning
title: Experimental Features
- title: API
+ title: API
\ No newline at end of file
diff --git a/docs/source/zh/index.mdx b/docs/source/zh/index.mdx
index 4f952c5db79c..e1a2a3971d87 100644
--- a/docs/source/zh/index.mdx
+++ b/docs/source/zh/index.mdx
@@ -18,61 +18,84 @@ specific language governing permissions and limitations under the License.
# 🧨 Diffusers
-🤗Diffusers提供了预训练好的视觉和音频扩散模型,并可以作为推理和训练的模块化工具箱。
+🤗 Diffusers 是一个值得首选用于生成图像、音频甚至 3D 分子结构的,最先进的预训练扩散模型库。
+无论您是在寻找简单的推理解决方案,还是想训练自己的扩散模型,🤗 Diffusers 这一模块化工具箱都能对其提供支持。
+本库的设计更偏重于[可用而非高性能](conceptual/philosophy#usability-over-performance)、[简明而非简单](conceptual/philosophy#simple-over-easy)以及[易用而非抽象](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction)。
-更准确地说,🤗Diffusers提供了:
-- 最先进的扩散管道,可以在推理中仅用几行代码运行(详情看[**Using Diffusers**](./using-diffusers/conditional_image_generation))或看[**管道**](#pipelines) 以获取所有支持的管道及其对应的论文的概述。
-- 可以在推理中交替使用的各种噪声调度程序,以便在推理过程中权衡如何选择速度和质量。有关更多信息,可以看[**Schedulers**](./api/schedulers/overview)。
-- 多种类型的模型,如U-Net,可用作端到端扩散系统中的构建模块。有关更多详细信息,可以看 [**Models**](./api/models) 。
-- 训练示例,展示如何训练最流行的扩散模型任务。更多相关信息,可以看[**Training**](./training/overview)。
+本库包含三个主要组件:
+- 最先进的扩散管道 [diffusion pipelines](api/pipelines/overview),只需几行代码即可进行推理。
+- 可交替使用的各种噪声调度器 [noise schedulers](api/schedulers/overview),用于平衡生成速度和质量。
+- 预训练模型 [models](api/models),可作为构建模块,并与调度程序结合使用,来创建您自己的端到端扩散系统。
-## 🧨 Diffusers pipelines
-
-下表总结了所有官方支持的pipelines及其对应的论文,部分提供了colab,可以直接尝试一下。
+
+## 🧨 Diffusers pipelines
-| 管道 | 论文 | 任务 | Colab
-|---|---|:---:|:---:|
-| [alt_diffusion](./api/pipelines/alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
-| [audio_diffusion](./api/pipelines/audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation | [](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/audio_diffusion_pipeline.ipynb)
-| [controlnet](./api/pipelines/stable_diffusion/controlnet) | [**ControlNet with Stable Diffusion**](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb)
-| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
-| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
-| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
-| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
-| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
-| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
-| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
-| [paint_by_example](./api/pipelines/paint_by_example) | [**Paint by Example: Exemplar-based Image Editing with Diffusion Models**](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
-| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
-| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
-| [score_sde_vp](./api/pipelines/score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
-| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [**Semantic Guidance**](https://arxiv.org/abs/2301.12247) | Text-Guided Generation | [](https://colab.research.google.com/github/ml-research/semantic-image-editing/blob/main/examples/SemanticGuidance.ipynb)
-| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
-| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
-| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
-| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [**MultiDiffusion**](https://multidiffusion.github.io/) | Text-to-Panorama Generation |
-| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [**InstructPix2Pix**](https://github.com/timothybrooks/instruct-pix2pix) | Text-Guided Image Editing|
-| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [**Zero-shot Image-to-Image Translation**](https://pix2pixzero.github.io/) | Text-Guided Image Editing |
-| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [**Attend and Excite for Stable Diffusion**](https://attendandexcite.github.io/Attend-and-Excite/) | Text-to-Image Generation |
-| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [**Self-Attention Guidance**](https://ku-cvlab.github.io/Self-Attention-Guidance) | Text-to-Image Generation |
-| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [**Stable Diffusion Image Variations**](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
-| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [**Stable Diffusion Latent Upscaler**](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
-| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
-| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
-| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Depth-Conditional Stable Diffusion**](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation |
-| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
-| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | [](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb)
-| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Text-to-Image Generation |
-| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Image-to-Image Text-Guided Generation |
-| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
-| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125) | Text-to-Image Generation |
-| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
-| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
-| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
-| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
-
+下表汇总了当前所有官方支持的pipelines及其对应的论文.
-**注意**: 管道是如何使用相应论文中提出的扩散模型的简单示例。
\ No newline at end of file
+| 管道 | 论文/仓库 | 任务 |
+|---|---|:---:|
+| [alt_diffusion](./api/pipelines/alt_diffusion) | [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
+| [audio_diffusion](./api/pipelines/audio_diffusion) | [Audio Diffusion](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation |
+| [controlnet](./api/pipelines/stable_diffusion/controlnet) | [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation |
+| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
+| [dance_diffusion](./api/pipelines/dance_diffusion) | [Dance Diffusion](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
+| [ddpm](./api/pipelines/ddpm) | [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
+| [ddim](./api/pipelines/ddim) | [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
+| [if](./if) | [**IF**](./api/pipelines/if) | Image Generation |
+| [if_img2img](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
+| [if_inpainting](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
+| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
+| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
+| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
+| [paint_by_example](./api/pipelines/paint_by_example) | [Paint by Example: Exemplar-based Image Editing with Diffusion Models](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
+| [pndm](./api/pipelines/pndm) | [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
+| [score_sde_ve](./api/pipelines/score_sde_ve) | [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
+| [score_sde_vp](./api/pipelines/score_sde_vp) | [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
+| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [Semantic Guidance](https://arxiv.org/abs/2301.12247) | Text-Guided Generation |
+| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation |
+| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation |
+| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting |
+| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [MultiDiffusion](https://multidiffusion.github.io/) | Text-to-Panorama Generation |
+| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [InstructPix2Pix: Learning to Follow Image Editing Instructions](https://arxiv.org/abs/2211.09800) | Text-Guided Image Editing|
+| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [Zero-shot Image-to-Image Translation](https://pix2pixzero.github.io/) | Text-Guided Image Editing |
+| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://arxiv.org/abs/2301.13826) | Text-to-Image Generation |
+| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [Improving Sample Quality of Diffusion Models Using Self-Attention Guidance](https://arxiv.org/abs/2210.00939) | Text-to-Image Generation Unconditional Image Generation |
+| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [Stable Diffusion Image Variations](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
+| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [Stable Diffusion Latent Upscaler](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
+| [stable_diffusion_model_editing](./api/pipelines/stable_diffusion/model_editing) | [Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://time-diffusion.github.io/) | Text-to-Image Model Editing |
+| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
+| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
+| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Depth-Conditional Stable Diffusion](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation |
+| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
+| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [Safe Stable Diffusion](https://arxiv.org/abs/2211.05105) | Text-Guided Generation |
+| [stable_unclip](./stable_unclip) | Stable unCLIP | Text-to-Image Generation |
+| [stable_unclip](./stable_unclip) | Stable unCLIP | Image-to-Image Text-Guided Generation |
+| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
+| [text_to_video_sd](./api/pipelines/text_to_video) | [Modelscope's Text-to-video-synthesis Model in Open Domain](https://modelscope.cn/models/damo/text-to-video-synthesis/summary) | Text-to-Video Generation |
+| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125)(implementation by [kakaobrain](https://github.com/kakaobrain/karlo)) | Text-to-Image Generation |
+| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
+| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
+| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
+| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
diff --git a/docs/source/zh/installation.mdx b/docs/source/zh/installation.mdx
index cda91df8a6cd..8cd3ad97cc21 100644
--- a/docs/source/zh/installation.mdx
+++ b/docs/source/zh/installation.mdx
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# 安装
-安装🤗 Diffusers 到你正在使用的任何深度学习框架中。
+在你正在使用的任意深度学习框架中安装 🤗 Diffusers 。
🤗 Diffusers已在Python 3.7+、PyTorch 1.7.0+和Flax上进行了测试。按照下面的安装说明,针对你正在使用的深度学习框架进行安装:
@@ -21,11 +21,11 @@ specific language governing permissions and limitations under the License.
## 使用pip安装
-你需要在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装🤗 Diffusers 。
+你需要在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Diffusers 。
如果你对 Python 虚拟环境不熟悉,可以看看这个[教程](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
-使用虚拟环境你可以轻松管理不同的项目,避免了依赖项之间的兼容性问题。
+在虚拟环境中,你可以轻松管理不同的项目,避免依赖项之间的兼容性问题。
首先,在你的项目目录下创建一个虚拟环境:
@@ -39,7 +39,7 @@ python -m venv .env
source .env/bin/activate
```
-现在你就可以安装 🤗 Diffusers了!使用下边这个命令:
+现在,你就可以安装 🤗 Diffusers了!使用下边这个命令:
**PyTorch**
@@ -55,7 +55,7 @@ pip install diffusers["flax"]
## 从源代码安装
-在从源代码安装 `diffusers` 之前,你先确定你已经安装了 `torch` 和 `accelerate`。
+在从源代码安装 `diffusers` 之前,确保你已经安装了 `torch` 和 `accelerate`。
`torch`的安装教程可以看 `torch` [文档](https://pytorch.org/get-started/locally/#start-locally).
@@ -65,17 +65,17 @@ pip install diffusers["flax"]
pip install accelerate
```
-从源码安装 🤗 Diffusers 使用以下命令:
+从源码安装 🤗 Diffusers 需要使用以下命令:
```bash
pip install git+https://github.com/huggingface/diffusers
```
这个命令安装的是最新的 `main`版本,而不是最近的`stable`版。
-`main`是一直和最新进展保持一致的。比如,上次正式版发布了,有bug,新的正式版还没推出,但是`main`中可以看到这个bug被修复了。
-但是这也意味着 `main`版本并不总是稳定的。
+`main`是一直和最新进展保持一致的。比如,上次发布的正式版中有bug,在`main`中可以看到这个bug被修复了,但是新的正式版此时尚未推出。
+但是这也意味着 `main`版本不保证是稳定的。
-我们努力保持`main`版本正常运行,大多数问题都能在几个小时或一天之内解决
+我们努力保持`main`版本正常运行,大多数问题都能在几个小时或一天之内解决
如果你遇到了问题,可以提 [Issue](https://github.com/huggingface/transformers/issues),这样我们就能更快修复问题了。
@@ -105,8 +105,8 @@ pip install -e ".[torch]"
pip install -e ".[flax]"
```
-这些命令将连接你克隆的版本库和你的 Python 库路径。
-现在,除了正常的库路径外,Python 还会在你克隆的文件夹内寻找。
+这些命令将连接到你克隆的版本库和你的 Python 库路径。
+现在,不只是在通常的库路径,Python 还会在你克隆的文件夹内寻找包。
例如,如果你的 Python 包通常安装在 `~/anaconda3/envs/main/lib/python3.7/Site-packages/`,Python 也会搜索你克隆到的文件夹。`~/diffusers/`。
@@ -116,32 +116,31 @@ pip install -e ".[flax]"
-现在你可以用下面的命令轻松地将你克隆的🤗Diffusers仓库更新到最新版本。
+现在你可以用下面的命令轻松地将你克隆的 🤗 Diffusers 库更新到最新版本。
```bash
cd ~/diffusers/
git pull
```
-你的Python环境将在下次运行时找到`main`版本的🤗 Diffusers。
+你的Python环境将在下次运行时找到`main`版本的 🤗 Diffusers。
-## 注意遥测日志
+## 注意 Telemetry 日志
-我们的库会在使用`from_pretrained()`请求期间收集信息。这些数据包括Diffusers和PyTorch/Flax的版本,请求的模型或管道,以及预训练检查点的路径(如果它被托管在Hub上)。
+我们的库会在使用`from_pretrained()`请求期间收集 telemetry 信息。这些数据包括Diffusers和PyTorch/Flax的版本,请求的模型或管道类,以及预训练检查点的路径(如果它被托管在Hub上的话)。
+这些使用数据有助于我们调试问题并确定新功能的开发优先级。
+Telemetry 数据仅在从 HuggingFace Hub 中加载模型和管道时发送,而不会在本地使用期间收集。
-这些使用数据有助于我们调试问题并优先考虑新功能。
-当从HuggingFace Hub加载模型和管道时才会发送遥测数据,并且在本地使用时不会收集数据。
+我们知道,并不是每个人都想分享这些的信息,我们尊重您的隐私,
+因此您可以通过在终端中设置 `DISABLE_TELEMETRY` 环境变量从而禁用 Telemetry 数据收集:
-我们知道并不是每个人都想分享这些的信息,我们尊重您的隐私,
-因此您可以通过在终端中设置“DISABLE_TELEMETRY”环境变量来禁用遥测数据的收集:
-
-在Linux/MacOS中:
+Linux/MacOS :
```bash
export DISABLE_TELEMETRY=YES
```
-在Windows中:
+Windows :
```bash
set DISABLE_TELEMETRY=YES
```
\ No newline at end of file