diff --git a/examples/controlnet/README.md b/examples/controlnet/README.md index 4e6856560bde..f3621ac61309 100644 --- a/examples/controlnet/README.md +++ b/examples/controlnet/README.md @@ -320,6 +320,12 @@ Then cd in the example folder and run pip install -U -r requirements_flax.txt ``` +If you want to use Weights and Biases logging, you should also install `wandb` now + +```bash +pip install wandb +``` + Now let's downloading two conditioning images that we will use to run validation during the training in order to track our progress ``` @@ -389,4 +395,17 @@ Note, however, that the performance of the TPUs might get bottlenecked as stream * [Webdataset](https://webdataset.github.io/webdataset/) * [TorchData](https://github.com/pytorch/data) -* [TensorFlow Datasets](https://www.tensorflow.org/datasets/tfless_tfds) \ No newline at end of file +* [TensorFlow Datasets](https://www.tensorflow.org/datasets/tfless_tfds) + +When work with a larger dataset, you may need to run training process for a long time and it’s useful to save regular checkpoints during the process. You can use the following argument to enable intermediate checkpointing: + +```bash + --checkpointing_steps=500 +``` +This will save the trained model in subfolders of your output_dir. Subfolder names is the number of steps performed so far; for example: a checkpoint saved after 500 training steps would be saved in a subfolder named 500 + +You can then start your training from this saved checkpoint with + +```bash + --controlnet_model_name_or_path="./control_out/500" +``` \ No newline at end of file diff --git a/examples/controlnet/train_controlnet_flax.py b/examples/controlnet/train_controlnet_flax.py index 8d316fd048b9..292b665a8a42 100644 --- a/examples/controlnet/train_controlnet_flax.py +++ b/examples/controlnet/train_controlnet_flax.py @@ -154,15 +154,16 @@ def log_validation(controlnet, controlnet_params, tokenizer, args, rng, weight_d def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): img_str = "" - for i, log in enumerate(image_logs): - images = log["images"] - validation_prompt = log["validation_prompt"] - validation_image = log["validation_image"] - validation_image.save(os.path.join(repo_folder, "image_control.png")) - img_str += f"prompt: {validation_prompt}\n" - images = [validation_image] + images - image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) - img_str += f"![images_{i})](./images_{i}.png)\n" + if image_logs is not None: + for i, log in enumerate(image_logs): + images = log["images"] + validation_prompt = log["validation_prompt"] + validation_image = log["validation_image"] + validation_image.save(os.path.join(repo_folder, "image_control.png")) + img_str += f"prompt: {validation_prompt}\n" + images = [validation_image] + images + image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) + img_str += f"![images_{i})](./images_{i}.png)\n" yaml = f""" --- @@ -213,6 +214,17 @@ def parse_args(): action="store_true", help="Load the pretrained model from a PyTorch checkpoint.", ) + parser.add_argument( + "--controlnet_revision", + type=str, + default=None, + help="Revision of controlnet model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--controlnet_from_pt", + action="store_true", + help="Load the controlnet model from a PyTorch checkpoint.", + ) parser.add_argument( "--tokenizer_name", type=str, @@ -731,7 +743,10 @@ def main(): if args.controlnet_model_name_or_path: logger.info("Loading existing controlnet weights") controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( - args.controlnet_model_name_or_path, from_pt=True, dtype=jnp.float32 + args.controlnet_model_name_or_path, + revision=args.controlnet_revision, + from_pt=args.controlnet_from_pt, + dtype=jnp.float32, ) else: logger.info("Initializing controlnet weights from unet") @@ -1021,6 +1036,8 @@ def cumul_grad_step(grad_idx, loss_grad_rng): if jax.process_index() == 0: if args.validation_prompt is not None: image_logs = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype) + else: + image_logs = None controlnet.save_pretrained( args.output_dir,