Skip to content

dreambooth checkpointing tests and docs #2339

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions examples/dreambooth/train_dreambooth.py
Original file line number Diff line number Diff line change
Expand Up @@ -188,9 +188,11 @@ def parse_args(input_args=None):
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
"instructions."
),
)
parser.add_argument(
Expand Down
81 changes: 81 additions & 0 deletions examples/test_examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,8 @@

from accelerate.utils import write_basic_config

from diffusers import DiffusionPipeline, UNet2DConditionModel


logging.basicConfig(level=logging.DEBUG)

Expand Down Expand Up @@ -140,6 +142,85 @@ def test_dreambooth(self):
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin")))
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))

def test_dreambooth_checkpointing(self):
with tempfile.TemporaryDirectory() as tmpdir:
instance_prompt = "photo"
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"

# Run training script with checkpointing
# max_train_steps == 5, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4

initial_run_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path {pretrained_model_name_or_path}
--instance_data_dir docs/source/en/imgs
--instance_prompt {instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 5
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=2
--seed=0
""".split()

run_command(self._launch_args + initial_run_args)

# check can run the original fully trained output pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(instance_prompt, num_inference_steps=2)

# check checkpoint directories exist
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))

# check can run an intermediate checkpoint
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
pipe(instance_prompt, num_inference_steps=2)

# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))

# Run training script for 7 total steps resuming from checkpoint 4

resume_run_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path {pretrained_model_name_or_path}
--instance_data_dir docs/source/en/imgs
--instance_prompt {instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--seed=0
""".split()

run_command(self._launch_args + resume_run_args)

# check can run new fully trained pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(instance_prompt, num_inference_steps=2)

# check old checkpoints do not exist
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))

# check new checkpoints exist
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6")))

def test_text_to_image(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
Expand Down