@@ -214,6 +214,7 @@ enum llm_arch {
214
214
LLM_ARCH_GEMMA,
215
215
LLM_ARCH_STARCODER2,
216
216
LLM_ARCH_MAMBA,
217
+ LLM_ARCH_COMMAND_R,
217
218
LLM_ARCH_UNKNOWN,
218
219
};
219
220
@@ -243,6 +244,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
243
244
{ LLM_ARCH_GEMMA, "gemma" },
244
245
{ LLM_ARCH_STARCODER2, "starcoder2" },
245
246
{ LLM_ARCH_MAMBA, "mamba" },
247
+ { LLM_ARCH_COMMAND_R, "command-r" },
246
248
{ LLM_ARCH_UNKNOWN, "(unknown)" },
247
249
};
248
250
@@ -268,6 +270,7 @@ enum llm_kv {
268
270
LLM_KV_EXPERT_COUNT,
269
271
LLM_KV_EXPERT_USED_COUNT,
270
272
LLM_KV_POOLING_TYPE,
273
+ LLM_KV_LOGIT_SCALE,
271
274
272
275
LLM_KV_ATTENTION_HEAD_COUNT,
273
276
LLM_KV_ATTENTION_HEAD_COUNT_KV,
@@ -332,6 +335,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
332
335
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
333
336
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
334
337
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" },
338
+ { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
335
339
336
340
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
337
341
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@@ -838,6 +842,21 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
838
842
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
839
843
},
840
844
},
845
+ {
846
+ LLM_ARCH_COMMAND_R,
847
+ {
848
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
849
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
850
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
851
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
852
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
853
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
854
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
855
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
856
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
857
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
858
+ },
859
+ },
841
860
{
842
861
LLM_ARCH_UNKNOWN,
843
862
{
@@ -1597,6 +1616,7 @@ enum e_model {
1597
1616
MODEL_20B,
1598
1617
MODEL_30B,
1599
1618
MODEL_34B,
1619
+ MODEL_35B,
1600
1620
MODEL_40B,
1601
1621
MODEL_65B,
1602
1622
MODEL_70B,
@@ -1643,6 +1663,7 @@ struct llama_hparams {
1643
1663
1644
1664
float f_clamp_kqv = 0.0f;
1645
1665
float f_max_alibi_bias = 0.0f;
1666
+ float f_logit_scale = 0.0f;
1646
1667
1647
1668
bool causal_attn = true;
1648
1669
bool need_kq_pos = false;
@@ -3231,6 +3252,7 @@ static const char * llama_model_type_name(e_model type) {
3231
3252
case MODEL_20B: return "20B";
3232
3253
case MODEL_30B: return "30B";
3233
3254
case MODEL_34B: return "34B";
3255
+ case MODEL_35B: return "35B";
3234
3256
case MODEL_40B: return "40B";
3235
3257
case MODEL_65B: return "65B";
3236
3258
case MODEL_70B: return "70B";
@@ -3623,6 +3645,15 @@ static void llm_load_hparams(
3623
3645
default: model.type = e_model::MODEL_UNKNOWN;
3624
3646
}
3625
3647
} break;
3648
+ case LLM_ARCH_COMMAND_R:
3649
+ {
3650
+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
3651
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
3652
+ switch (hparams.n_layer) {
3653
+ case 40: model.type = e_model::MODEL_35B; break;
3654
+ default: model.type = e_model::MODEL_UNKNOWN;
3655
+ }
3656
+ } break;
3626
3657
default: (void)0;
3627
3658
}
3628
3659
@@ -3944,6 +3975,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
3944
3975
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
3945
3976
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
3946
3977
LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
3978
+ LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
3947
3979
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
3948
3980
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
3949
3981
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
@@ -4918,6 +4950,37 @@ static bool llm_load_tensors(
4918
4950
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
4919
4951
}
4920
4952
} break;
4953
+ case LLM_ARCH_COMMAND_R:
4954
+ {
4955
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
4956
+
4957
+ // output
4958
+ {
4959
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
4960
+ // init output from the input tok embed
4961
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
4962
+ ml.n_created--; // artificial tensor
4963
+ ml.size_data += ggml_nbytes(model.output);
4964
+ }
4965
+
4966
+ for (int i = 0; i < n_layer; ++i) {
4967
+ ggml_context * ctx_layer = ctx_for_layer(i);
4968
+ ggml_context * ctx_split = ctx_for_layer_split(i);
4969
+
4970
+ auto & layer = model.layers[i];
4971
+
4972
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
4973
+
4974
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
4975
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
4976
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
4977
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
4978
+
4979
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
4980
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
4981
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
4982
+ }
4983
+ } break;
4921
4984
default:
4922
4985
throw std::runtime_error("unknown architecture");
4923
4986
}
@@ -8315,6 +8378,121 @@ struct llm_build_context {
8315
8378
8316
8379
return gf;
8317
8380
}
8381
+
8382
+ struct ggml_cgraph * build_command_r() {
8383
+
8384
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
8385
+
8386
+ const int64_t n_embd_head = hparams.n_embd_head_v;
8387
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8388
+ const float f_logit_scale = hparams.f_logit_scale;
8389
+
8390
+ struct ggml_tensor * cur;
8391
+ struct ggml_tensor * inpL;
8392
+
8393
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
8394
+
8395
+ // inp_pos - contains the positions
8396
+ struct ggml_tensor * inp_pos = build_inp_pos();
8397
+
8398
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
8399
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
8400
+
8401
+ for (int il = 0; il < n_layer; ++il) {
8402
+
8403
+ // norm
8404
+ cur = llm_build_norm(ctx0, inpL, hparams,
8405
+ model.layers[il].attn_norm, NULL,
8406
+ LLM_NORM, cb, il);
8407
+ cb(cur, "attn_norm", il);
8408
+ struct ggml_tensor * ffn_inp = cur;
8409
+
8410
+ // self-attention
8411
+ {
8412
+ // compute Q and K and RoPE them
8413
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
8414
+ cb(Qcur, "Qcur", il);
8415
+ if (model.layers[il].bq) {
8416
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
8417
+ cb(Qcur, "Qcur", il);
8418
+ }
8419
+
8420
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
8421
+ cb(Kcur, "Kcur", il);
8422
+ if (model.layers[il].bk) {
8423
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
8424
+ cb(Kcur, "Kcur", il);
8425
+ }
8426
+
8427
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
8428
+ cb(Vcur, "Vcur", il);
8429
+ if (model.layers[il].bv) {
8430
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
8431
+ cb(Vcur, "Vcur", il);
8432
+ }
8433
+
8434
+ Qcur = ggml_rope_custom(
8435
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
8436
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
8437
+ ext_factor, attn_factor, beta_fast, beta_slow
8438
+ );
8439
+ cb(Qcur, "Qcur", il);
8440
+
8441
+ Kcur = ggml_rope_custom(
8442
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
8443
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
8444
+ ext_factor, attn_factor, beta_fast, beta_slow
8445
+ );
8446
+ cb(Kcur, "Kcur", il);
8447
+
8448
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
8449
+ model.layers[il].wo, model.layers[il].bo,
8450
+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
8451
+ }
8452
+
8453
+ struct ggml_tensor * attn_out = cur;
8454
+
8455
+ // feed-forward network
8456
+ {
8457
+ cur = llm_build_ffn(ctx0, ffn_inp,
8458
+ model.layers[il].ffn_up, NULL,
8459
+ model.layers[il].ffn_gate, NULL,
8460
+ model.layers[il].ffn_down, NULL,
8461
+ NULL,
8462
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
8463
+ cb(cur, "ffn_out", il);
8464
+ }
8465
+
8466
+ // add together residual + FFN + self-attention
8467
+ cur = ggml_add(ctx0, cur, inpL);
8468
+ cur = ggml_add(ctx0, cur, attn_out);
8469
+ cb(cur, "l_out", il);
8470
+
8471
+ // input for next layer
8472
+ inpL = cur;
8473
+ }
8474
+
8475
+ cur = inpL;
8476
+
8477
+ cur = llm_build_norm(ctx0, cur, hparams,
8478
+ model.output_norm, NULL,
8479
+ LLM_NORM, cb, -1);
8480
+ cb(cur, "result_norm", -1);
8481
+
8482
+ // lm_head
8483
+ cur = ggml_mul_mat(ctx0, model.output, cur);
8484
+
8485
+ if (f_logit_scale) {
8486
+ cur = ggml_scale(ctx0, cur, f_logit_scale);
8487
+ }
8488
+
8489
+ cb(cur, "result_output", -1);
8490
+
8491
+ ggml_build_forward_expand(gf, cur);
8492
+
8493
+ return gf;
8494
+
8495
+ }
8318
8496
};
8319
8497
8320
8498
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -8497,6 +8675,10 @@ static struct ggml_cgraph * llama_build_graph(
8497
8675
{
8498
8676
result = llm.build_mamba();
8499
8677
} break;
8678
+ case LLM_ARCH_COMMAND_R:
8679
+ {
8680
+ result = llm.build_command_r();
8681
+ } break;
8500
8682
default:
8501
8683
GGML_ASSERT(false);
8502
8684
}
@@ -13147,6 +13329,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
13147
13329
case LLM_ARCH_ORION:
13148
13330
case LLM_ARCH_INTERNLM2:
13149
13331
case LLM_ARCH_MINICPM:
13332
+ case LLM_ARCH_COMMAND_R:
13150
13333
return LLAMA_ROPE_TYPE_NORM;
13151
13334
13152
13335
// the pairs of head values are offset by n_rot/2
0 commit comments