diff --git a/README.md b/README.md index 3b6e68aa7..8084bd918 100644 --- a/README.md +++ b/README.md @@ -8,6 +8,7 @@ LeetCode | # | Title | Solution | Difficulty | |---| ----- | -------- | ---------- | +|350|[Intersection of Two Arrays II](https://leetcode.com/problems/intersection-of-two-arrays-ii/) | [C++](./algorithms/cpp/intersectionOfTwoArraysII/intersectionOfTwoArraysII.cpp)|Easy| |349|[Intersection of Two Arrays](https://leetcode.com/problems/intersection-of-two-arrays/) | [C++](./algorithms/cpp/intersectionOfTwoArrays/intersectionOfTwoArrays.cpp)|Easy| |347|[Top K Frequent Elements](https://leetcode.com/problems/top-k-frequent-elements/) | [C++](./algorithms/cpp/topKFrequentElements/topKFrequentElements.cpp)|Medium| |345|[Reverse Vowels of a String](https://leetcode.com/problems/reverse-vowels-of-a-string/) | [C++](./algorithms/cpp/reverseVowelsOfAString/reverseVowelsOfAString.cpp)|Easy| diff --git a/algorithms/cpp/intersectionOfTwoArraysII/intersectionOfTwoArraysII.cpp b/algorithms/cpp/intersectionOfTwoArraysII/intersectionOfTwoArraysII.cpp new file mode 100644 index 000000000..3b20ef791 --- /dev/null +++ b/algorithms/cpp/intersectionOfTwoArraysII/intersectionOfTwoArraysII.cpp @@ -0,0 +1,61 @@ +// Source : https://leetcode.com/problems/intersection-of-two-arrays-ii/ +// Author : Calinescu Valentin +// Date : 2016-05-22 + +/*************************************************************************************** + * + * Given two arrays, write a function to compute their intersection. + * + * Example: + * Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2, 2]. + * + * Note: + * Each element in the result should appear as many times as it shows in both arrays. + * The result can be in any order. + * + * Follow up: + * What if the given array is already sorted? How would you optimize your algorithm? + * What if nums1's size is small compared to num2's size? Which algorithm is better? + * What if elements of nums2 are stored on disk, and the memory is limited such that you + * cannot load all elements into the memory at once? + * + ***************************************************************************************/ + + /* Solution + * -------- + * + * Follow up: + * + * 1)If the given array is already sorted we can skip the sorting. + * + * 2)If nums1 is significantly smaller than nums2 we can only sort nums1 and then binary + * search every element of nums2 in nums1 with a total complexity of (MlogN) or if nums2 + * is already sorted we can search every element of nums1 in nums2 in O(NlogM) + * + * 3)Just like 2), we can search for every element in nums2, thus having an online + * algorithm. + */ + +class Solution { // O(NlogN + MlogM) +public: + vector intersect(vector& nums1, vector& nums2) { + sort(nums1.begin(), nums1.end());//we sort both vectors in order to intersect + sort(nums2.begin(), nums2.end());//them later in O(N + M), where N = nums1.size() + vector solution; //M = nums2.size() + int index = 0; + bool finished = false; + for(int i = 0; i < nums1.size() && !finished; i++) + { + while(index < nums2.size() && nums1[i] > nums2[index])//we skip over the + index++;//smaller elements in nums2 + if(index == nums2.size())//we have reached the end of nums2 so we have no more + finished = true;//elements to add to the intersection + else if(nums1[i] == nums2[index])//we found a common element + { + solution.push_back(nums1[i]); + index++; + } + } + return solution; + } +};