@@ -450,7 +450,7 @@ def assign_coords(self, coords=None, **coords_kwargs):
450
450
451
451
Examples
452
452
--------
453
- Convert longitude coordinates from 0-359 to -180-179:
453
+ Convert `DataArray` longitude coordinates from 0-359 to -180-179:
454
454
455
455
>>> da = xr.DataArray(
456
456
... np.random.rand(4),
@@ -490,6 +490,53 @@ def assign_coords(self, coords=None, **coords_kwargs):
490
490
491
491
>>> _ = da.assign_coords({"lon_2": ("lon", lon_2)})
492
492
493
+ Note the same method applies to `Dataset` objects.
494
+
495
+ Convert `Dataset` longitude coordinates from 0-359 to -180-179:
496
+
497
+ >>> np.random.seed(0)
498
+ >>> ds = xr.Dataset(
499
+ ... data_vars=dict(
500
+ ... temperature=(["x", "y", "time"], 15 + 8 * np.random.randn(2, 2, 3)),
501
+ ... precipitation=(["x", "y", "time"], 10 * np.random.rand(2, 2, 3)),
502
+ ... ),
503
+ ... coords=dict(
504
+ ... lon=(["x", "y"], [[260.17, 260.68], [260.21, 260.77]]),
505
+ ... lat=(["x", "y"], [[42.25, 42.21], [42.63, 42.59]]),
506
+ ... time=pd.date_range("2014-09-06", periods=3),
507
+ ... reference_time=pd.Timestamp("2014-09-05")
508
+ ... ),
509
+ ... attrs=dict(description="Weather-related data"),
510
+ ... )
511
+ >>> ds
512
+ <xarray.Dataset>
513
+ Dimensions: (x: 2, y: 2, time: 3)
514
+ Coordinates:
515
+ lon (x, y) float64 260.2 260.7 260.2 260.8
516
+ lat (x, y) float64 42.25 42.21 42.63 42.59
517
+ * time (time) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08
518
+ reference_time datetime64[ns] 2014-09-05
519
+ Dimensions without coordinates: x, y
520
+ Data variables:
521
+ temperature (x, y, time) float64 29.11 18.2 22.83 ... 18.28 16.15 26.63
522
+ precipitation (x, y, time) float64 5.68 9.256 0.7104 ... 7.992 4.615 7.805
523
+ Attributes:
524
+ description: Temperature data
525
+ >>> ds.assign_coords(lon=(((ds.lon + 180) % 360) - 180))
526
+ <xarray.Dataset>
527
+ Dimensions: (x: 2, y: 2, time: 3)
528
+ Coordinates:
529
+ lon (x, y) float64 -99.83 -99.32 -99.79 -99.23
530
+ lat (x, y) float64 42.25 42.21 42.63 42.59
531
+ * time (time) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08
532
+ reference_time datetime64[ns] 2014-09-05
533
+ Dimensions without coordinates: x, y
534
+ Data variables:
535
+ temperature (x, y, time) float64 29.11 18.2 22.83 ... 18.28 16.15 26.63
536
+ precipitation (x, y, time) float64 5.68 9.256 0.7104 ... 7.992 4.615 7.805
537
+ Attributes:
538
+ description: Weather-related data
539
+
493
540
Notes
494
541
-----
495
542
Since ``coords_kwargs`` is a dictionary, the order of your arguments
0 commit comments