You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Currently, Pool stores each per-P shard's overflow in a slice
protected by a Mutex. In order to store to the overflow or steal from
another shard, a P must lock that shard's Mutex. This allows for
simple synchronization between Put and Get, but has unfortunate
consequences for clearing pools.
Pools are cleared during STW sweep termination, and hence rely on
pinning a goroutine to its P to synchronize between Get/Put and
clearing. This makes the Get/Put fast path extremely fast because it
can rely on quiescence-style coordination, which doesn't even require
atomic writes, much less locking.
The catch is that a goroutine cannot acquire a Mutex while pinned to
its P (as this could deadlock). Hence, it must drop the pin on the
slow path. But this means the slow path is not synchronized with
clearing. As a result,
1) It's difficult to reason about races between clearing and the slow
path. Furthermore, this reasoning often depends on unspecified nuances
of where preemption points can occur.
2) Clearing must zero out the pointer to every object in every Pool to
prevent a concurrent slow path from causing all objects to be
retained. Since this happens during STW, this has an O(# objects in
Pools) effect on STW time.
3) We can't implement a victim cache without making clearing even
slower.
This CL solves these problems by replacing the locked overflow slice
with a lock-free structure. This allows Gets and Puts to be pinned the
whole time they're manipulating the shards slice (Pool.local), which
eliminates the races between Get/Put and clearing. This, in turn,
eliminates the need to zero all object pointers, reducing clearing to
O(# of Pools) during STW.
In addition to significantly reducing STW impact, this also happens to
speed up the Get/Put fast-path and the slow path. It somewhat
increases the cost of PoolExpensiveNew, but we'll fix that in the next
CL.
name old time/op new time/op delta
Pool-12 3.00ns ± 0% 2.21ns ±36% -26.32% (p=0.000 n=18+19)
PoolOverflow-12 600ns ± 1% 587ns ± 1% -2.21% (p=0.000 n=16+18)
PoolSTW-12 71.0µs ± 2% 5.6µs ± 3% -92.15% (p=0.000 n=20+20)
PoolExpensiveNew-12 3.14ms ± 5% 3.69ms ± 7% +17.67% (p=0.000 n=19+20)
name old p50-ns/STW new p50-ns/STW delta
PoolSTW-12 70.7k ± 1% 5.5k ± 2% -92.25% (p=0.000 n=20+20)
name old p95-ns/STW new p95-ns/STW delta
PoolSTW-12 73.1k ± 2% 6.7k ± 4% -90.86% (p=0.000 n=18+19)
name old GCs/op new GCs/op delta
PoolExpensiveNew-12 0.38 ± 1% 0.39 ± 1% +2.07% (p=0.000 n=20+18)
name old New/op new New/op delta
PoolExpensiveNew-12 33.9 ± 6% 40.0 ± 6% +17.97% (p=0.000 n=19+20)
(https://perf.golang.org/search?q=upload:20190311.1)
Fixes#22331.
For #22950.
Change-Id: Ic5cd826e25e218f3f8256dbc4d22835c1fecb391
Reviewed-on: https://go-review.googlesource.com/c/go/+/166960
Run-TryBot: Austin Clements <[email protected]>
TryBot-Result: Gobot Gobot <[email protected]>
Reviewed-by: David Chase <[email protected]>
0 commit comments