We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi!
I have just cloned the latest llama.cpp repo, and I'm getting this error when trying to run a BF16 GGUF model with llama.cpp:
GGML_ASSERT: ggml-cuda.cu:1277: to_fp32_cuda != nullptr
I am using ddh0/Meta-Llama-3-8B-Instruct-bf16-GGUF, which I made myself, and I have confirmed to work on Metal.
This is the command I'm running:
./llama.cpp/main -m ./models/Meta-Llama-3-8B-Instruct-bf16.gguf -ngl 0 -nkvo -c 8192 -n 1 -p 'nfuiresnfiuesnfuisnfuiesnfiusnfiusenfiusenfiusnfiusenfuisenfiusenfiusenfuisenfiusenfuisenfiuenfisenfuesncuesnfaensifonqfnoeqiwnfiowinefioewnfowienfoiewtgowefeioncwncioenciencisncenicsnicneicnejfoiwejfoiwefoewifnenfoiewnfiohgewoiewhdcmioesiuoghscnklesioughsmkcwkhgiowenweiopdciuewfuowncoiwenfiuwefwnueoicwe'
Important note:
The full output of the command is here:
./llama.cpp/main -m ./models/Meta-Llama-3-8B-Instruct-bf16.gguf -ngl 0 -nkvo -c 8192 -n 1 -p 'nfuiresnfiuesnfuisnfuiesnfiusnfiusenfiusenfiusnfiusenfuisenfiusenfiusenfuisenfiusenfuisenfiuenfisenfuesncuesnfaensifonqfnoeqiwnfiowinefioewnfowienfoiewtgowefeioncwncioenciencisncenicsnicneicnejfoiwejfoiwefoewifnenfoiewnfiohgewoiewhdcmioesiuoghscnklesioughsmkcwkhgiowenweiopdciuewfuowncoiwenfiuwefwnueoicwe' Log start main: build = 2852 (fae9d234) main: built with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu main: seed = 1715439608 llama_model_loader: loaded meta data with 22 key-value pairs and 291 tensors from ./models/Meta-Llama-3-8B-Instruct-bf16.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = Meta-Llama-3-8B-Instruct llama_model_loader: - kv 2: llama.block_count u32 = 32 llama_model_loader: - kv 3: llama.context_length u32 = 8192 llama_model_loader: - kv 4: llama.embedding_length u32 = 4096 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336 llama_model_loader: - kv 6: llama.attention.head_count u32 = 32 llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8 llama_model_loader: - kv 8: llama.rope.freq_base f32 = 500000.000000 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: general.file_type u32 = 32 llama_model_loader: - kv 11: llama.vocab_size u32 = 128256 llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 14: tokenizer.ggml.pre str = llama-bpe llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "... llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 128000 llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 128009 llama_model_loader: - kv 20: tokenizer.chat_template str = {% set loop_messages = messages %}{% ... llama_model_loader: - kv 21: general.quantization_version u32 = 2 llama_model_loader: - type f32: 65 tensors llama_model_loader: - type bf16: 226 tensors llm_load_vocab: special tokens definition check successful ( 256/128256 ). llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = llama llm_load_print_meta: vocab type = BPE llm_load_print_meta: n_vocab = 128256 llm_load_print_meta: n_merges = 280147 llm_load_print_meta: n_ctx_train = 8192 llm_load_print_meta: n_embd = 4096 llm_load_print_meta: n_head = 32 llm_load_print_meta: n_head_kv = 8 llm_load_print_meta: n_layer = 32 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 4 llm_load_print_meta: n_embd_k_gqa = 1024 llm_load_print_meta: n_embd_v_gqa = 1024 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-05 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 14336 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 0 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 500000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_yarn_orig_ctx = 8192 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: model type = 8B llm_load_print_meta: model ftype = BF16 llm_load_print_meta: model params = 8.03 B llm_load_print_meta: model size = 14.96 GiB (16.00 BPW) llm_load_print_meta: general.name = Meta-Llama-3-8B-Instruct llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>' llm_load_print_meta: EOS token = 128009 '<|eot_id|>' llm_load_print_meta: LF token = 128 'Ä' llm_load_print_meta: EOT token = 128009 '<|eot_id|>' ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes ggml_cuda_init: found 1 CUDA devices: Device 0: NVIDIA GeForce RTX 4060 Ti, compute capability 8.9, VMM: yes llm_load_tensors: ggml ctx size = 0.15 MiB llm_load_tensors: offloading 0 repeating layers to GPU llm_load_tensors: offloaded 0/33 layers to GPU llm_load_tensors: CPU buffer size = 15317.02 MiB ......................................................................................... llama_new_context_with_model: n_ctx = 8192 llama_new_context_with_model: n_batch = 2048 llama_new_context_with_model: n_ubatch = 512 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 500000.0 llama_new_context_with_model: freq_scale = 1 llama_kv_cache_init: CUDA_Host KV buffer size = 1024.00 MiB llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB llama_new_context_with_model: CUDA_Host output buffer size = 0.49 MiB llama_new_context_with_model: CUDA0 compute buffer size = 1260.50 MiB llama_new_context_with_model: CUDA_Host compute buffer size = 540.01 MiB llama_new_context_with_model: graph nodes = 1030 llama_new_context_with_model: graph splits = 324 system_info: n_threads = 8 / 16 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | sampling: repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000 top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800 mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000 sampling order: CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature generate: n_ctx = 8192, n_batch = 2048, n_predict = 1, n_keep = 0 <|begin_of_text|>nfuiresnfiuesnfuisnfuiesnfiusnfiusenfiusenfiusnfiusenfuisenfiusenfiusenfuisenfiusenfuisenfiuenfisenfuesncuesnfaensifonqfnoeqiwnfiowinefioewnfowienfoiewtgowefeioncwncioenciencisncenicsnicneicnejfoiwejfoiwefoewifnenfoiewnfiohgewoiewhdcmioesiuoghscnklesioughsmkcwkhgiowenweiopdciuewfuowncoiwenfiuwefwnueoicweGGML_ASSERT: ggml-cuda.cu:1277: to_fp32_cuda != nullptr Aborted
I'd welcome any insight. Please let me know if I can provide any other information.
The text was updated successfully, but these errors were encountered:
I don't think BF16 works with CUDA, i.e. #7211.
Sorry, something went wrong.
I will close this issue as a duplicate and refer to the existing issue #7211 - thanks.
No branches or pull requests
Hi!
I have just cloned the latest llama.cpp repo, and I'm getting this error when trying to run a BF16 GGUF model with llama.cpp:
GGML_ASSERT: ggml-cuda.cu:1277: to_fp32_cuda != nullptr
I am using ddh0/Meta-Llama-3-8B-Instruct-bf16-GGUF, which I made myself, and I have confirmed to work on Metal.
This is the command I'm running:
Important note:
The program only crashes with batch size 32 or greater -- if I only do text generation and small prompts, it works fine.
The full output of the command is here:
Click to expand full llama.cpp output
I'd welcome any insight. Please let me know if I can provide any other information.
The text was updated successfully, but these errors were encountered: