Skip to content

ggml_opencl: kernel compile error: fatal error: cannot open file '/usr/lib/clc/gfx1030-amdgcn-mesa-mesa3d.bc': No such file or directory #2655

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
grigio opened this issue Aug 18, 2023 · 2 comments

Comments

@grigio
Copy link

grigio commented Aug 18, 2023

Prerequisites

Please answer the following questions for yourself before submitting an issue.

  • [ x ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
  • [ x ] I carefully followed the README.md.
  • [ x ] I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
  • [ x ] I reviewed the Discussions, and have a new bug or useful enhancement to share.

Expected Behavior

Please provide a detailed written description of what you were trying to do, and what you expected llama.cpp to do.

Current Behavior

Please provide a detailed written description of what llama.cpp did, instead.

Environment and Context

Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.

  • Physical (or virtual) hardware you are using, e.g. for Linux:
lscpu
Architecture:            x86_64
  CPU op-mode(s):        32-bit, 64-bit
  Address sizes:         48 bits physical, 48 bits virtual
  Byte Order:            Little Endian
CPU(s):                  16
  On-line CPU(s) list:   0-15
Vendor ID:               AuthenticAMD
  Model name:            AMD Ryzen 7 7700 8-Core Processor
    CPU family:          25
    Model:               97
    Thread(s) per core:  2
    Core(s) per socket:  8
    Socket(s):           1
    Stepping:            2
    Frequency boost:     enabled
    CPU(s) scaling MHz:  57%
    CPU max MHz:         5388,2808
    CPU min MHz:         3000,0000
    BogoMIPS:            7585,50
    Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_o
                         pt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monito
                         r ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm ss
                         e4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp
                         _l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512d
                         q rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occ
                         up_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save 
                         tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl avx512vbm
                         i umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smc
                         a fsrm flush_l1d
Virtualization features: 
  Virtualization:        AMD-V
Caches (sum of all):     
  L1d:                   256 KiB (8 instances)
  L1i:                   256 KiB (8 instances)
  L2:                    8 MiB (8 instances)
  L3:                    32 MiB (1 instance)
NUMA:                    
  NUMA node(s):          1
  NUMA node0 CPU(s):     0-15
Vulnerabilities:         
  Gather data sampling:  Not affected
  Itlb multihit:         Not affected
  L1tf:                  Not affected
  Mds:                   Not affected
  Meltdown:              Not affected
  Mmio stale data:       Not affected
  Retbleed:              Not affected
  Spec rstack overflow:  Mitigation; safe RET, no microcode
  Spec store bypass:     Mitigation; Speculative Store Bypass disabled via prctl
  Spectre v1:            Mitigation; usercopy/swapgs barriers and __user pointer sanitization
  Spectre v2:            Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
  Srbds:                 Not affected
  Tsx async abort:       Not affected

  • Operating System, e.g. for Linux:
Linux xxx 6.1.0-11-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.38-4 (2023-08-08) x86_64 GNU/Linux
  • SDK version, e.g. for Linux:
$ python3 --version
Python 3.11.2

$ make --version
GNU Make 4.3

$ g++ --version
g++ (Debian 12.2.0-14) 12.2.0

Failure Information (for bugs)

./main --model /mnt/exwin/models/gplatty-30b.ggmlv3.q4_K_M.bin -p "make me happy" -t 6 
main: build = 1000 (604b8bd)
main: seed  = 1692349561
ggml_opencl: selecting platform: 'Clover'
ggml_opencl: selecting device: 'AMD Radeon Graphics (gfx1036, LLVM 15.0.6, DRM 3.53, 6.1.0-11-amd64)'
ggml_opencl: device FP16 support: false
ggml_opencl: kernel compile error:

fatal error: cannot open file '/usr/lib/clc/gfx1030-amdgcn-mesa-mesa3d.bc': No such file or directory
sudo apt install mesa-opencl-icd libclblast1 libclblast-dev
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
mesa-opencl-icd is already the newest version (22.3.6-1+deb12u1).
libclblast1 is already the newest version (1.5.3-3).
libclblast-dev is already the newest version (1.5.3-3).
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Steps to Reproduce

Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.

  1. step 1
  2. step 2
  3. step 3
  4. etc.

Failure Logs

Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.

Also, please try to avoid using screenshots if at all possible. Instead, copy/paste the console output and use Github's markdown to cleanly format your logs for easy readability.

Example environment info:

llama.cpp$ git log | head -1
commit 2af23d30434a677c6416812eea52ccc0af65119c

llama.cpp$ lscpu | egrep "AMD|Flags"
Vendor ID:                       AuthenticAMD
Model name:                      AMD Ryzen Threadripper 1950X 16-Core Processor
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev
Virtualization:                  AMD-V

llama.cpp$ python3 --version
Python 3.10.9

llama.cpp$ pip list | egrep "torch|numpy|sentencepiece"
numpy                         1.24.2
numpydoc                      1.5.0
sentencepiece                 0.1.97
torch                         1.13.1
torchvision                   0.14.1

llama.cpp$ make --version | head -1
GNU Make 4.3

$ md5sum ./models/65B/ggml-model-q4_0.bin
dbdd682cce80e2d6e93cefc7449df487  ./models/65B/ggml-model-q4_0.bin

Example run with the Linux command perf

llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
main: seed = 1679149377
llama_model_load: loading model from './models/65B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx   = 512
llama_model_load: n_embd  = 8192
llama_model_load: n_mult  = 256
llama_model_load: n_head  = 64
llama_model_load: n_layer = 80
llama_model_load: n_rot   = 128
llama_model_load: f16     = 2
llama_model_load: n_ff    = 22016
llama_model_load: n_parts = 8
llama_model_load: ggml ctx size = 41477.73 MB
llama_model_load: memory_size =  2560.00 MB, n_mem = 40960
llama_model_load: loading model part 1/8 from './models/65B/ggml-model-q4_0.bin'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 2/8 from './models/65B/ggml-model-q4_0.bin.1'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 3/8 from './models/65B/ggml-model-q4_0.bin.2'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 4/8 from './models/65B/ggml-model-q4_0.bin.3'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 5/8 from './models/65B/ggml-model-q4_0.bin.4'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 6/8 from './models/65B/ggml-model-q4_0.bin.5'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 7/8 from './models/65B/ggml-model-q4_0.bin.6'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.7'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723

system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |

main: prompt: 'Please close your issue when it has been answered.'
main: number of tokens in prompt = 11
     1 -> ''
 12148 -> 'Please'
  3802 -> ' close'
   596 -> ' your'
  2228 -> ' issue'
   746 -> ' when'
   372 -> ' it'
   756 -> ' has'
  1063 -> ' been'
  7699 -> ' answered'
 29889 -> '.'

sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000


Please close your issue when it has been answered.
@duncan-donut: I'm trying to figure out what kind of "support" you need for this script and why, exactly? Is there a question about how the code works that hasn't already been addressed in one or more comments below this ticket, or are we talking something else entirely like some sorta bugfixing job because your server setup is different from mine??
I can understand if your site needs to be running smoothly and you need help with a fix of sorts but there should really be nothing wrong here that the code itself could not handle. And given that I'm getting reports about how it works perfectly well on some other servers, what exactly are we talking? A detailed report will do wonders in helping us get this resolved for ya quickly so please take your time and describe the issue(s) you see as clearly & concisely as possible!!
@duncan-donut: I'm not sure if you have access to cPanel but you could try these instructions. It is worth a shot! Let me know how it goes (or what error message, exactly!) when/if ya give that code a go? [end of text]


main: mem per token = 71159620 bytes
main:     load time = 19309.95 ms
main:   sample time =   168.62 ms
main:  predict time = 223895.61 ms / 888.47 ms per token
main:    total time = 246406.42 ms

 Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':

        3636882.89 msec task-clock                #   14.677 CPUs utilized
             13509      context-switches          #    3.714 /sec
              2436      cpu-migrations            #    0.670 /sec
          10476679      page-faults               #    2.881 K/sec
    13133115082869      cycles                    #    3.611 GHz                      (16.77%)
       29314462753      stalled-cycles-frontend   #    0.22% frontend cycles idle     (16.76%)
    10294402631459      stalled-cycles-backend    #   78.39% backend cycles idle      (16.74%)
    23479217109614      instructions              #    1.79  insn per cycle
                                                  #    0.44  stalled cycles per insn  (16.76%)
     2353072268027      branches                  #  647.002 M/sec                    (16.77%)
        1998682780      branch-misses             #    0.08% of all branches          (16.76%)

     247.802177522 seconds time elapsed

    3618.573072000 seconds user
      18.491698000 seconds sys
@arch-btw
Copy link
Contributor

There is some discussion about this in: #2540

@SlyEcho
Copy link
Collaborator

SlyEcho commented Aug 25, 2023

Install AMD OpenCL drivers and make sure llama.cpp is using them with the instructions in the README

@SlyEcho SlyEcho closed this as completed Aug 25, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants