@@ -2697,14 +2697,10 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
2697
2697
}
2698
2698
}
2699
2699
2700
- // GroupedMatmulV2 required tensor_list.size < 128
2701
2700
size_t GROUP_SIZE = 128 ;
2702
- std::vector<std::vector<aclTensor*>> src0_tensor_vec_vec;
2703
- std::vector<std::vector<aclTensor*>> src1_tensor_vec_vec;
2704
- std::vector<std::vector<aclTensor*>> dst_tensor_vec_vec;
2705
-
2706
- // split and call GroupedMatmulV2
2701
+ // GroupedMatmulV2 required tensor_list.size < 128
2707
2702
for (size_t i = 0 ; i < src0_tensor_vec.size (); i += GROUP_SIZE) {
2703
+ // split and call GroupedMatmulV2
2708
2704
size_t end = std::min (i + GROUP_SIZE, src0_tensor_vec.size ());
2709
2705
std::vector<aclTensor*> src0_tensor_vec_split (src0_tensor_vec.begin () + i, src0_tensor_vec.begin () + end);
2710
2706
std::vector<aclTensor*> src1_tensor_vec_split (src1_tensor_vec.begin () + i, src1_tensor_vec.begin () + end);
@@ -2722,13 +2718,144 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
2722
2718
return ;
2723
2719
}
2724
2720
2721
+ /* *
2722
+ * @brief Performs expert-specific matrix multiplication (MoE) with
2723
+ * quantized precision using the CANN backend.
2724
+ *
2725
+ * This function executes a matrix multiplication operation tailored for
2726
+ * Mixture of Experts (MoE) models, where the input tensor is multiplied
2727
+ * with expert-specific quantized weight matrices. It leverages the CANN
2728
+ * backend to perform efficient low-precision computations and stores the
2729
+ * quantized result in the destination tensor `dst`.
2730
+ *
2731
+ * Quantization techniques reduce memory footprint and improve performance
2732
+ * by using lower-bit representations (e.g., int8) instead of floating-point.
2733
+ * This function is designed to work with such formats and may incorporate
2734
+ * optimizations like identity-based fast paths or routing masks for sparse
2735
+ * expert selection.
2736
+ *
2737
+ * @param ctx The context for executing CANN backend operations.
2738
+ * @param dst The destination tensor where the quantized MoE multiplication result
2739
+ * will be stored.
2740
+ *
2741
+ * @note This function assumes quantized data types and is designed for
2742
+ * MoE architectures with potential sparse expert routing.
2743
+ */
2744
+ static void ggml_cann_mul_mat_id_quant (ggml_backend_cann_context& ctx, ggml_tensor* dst) {
2745
+ // TODO: Use aclnnGroupedMatMul
2746
+ // dst [M, K, N, 1]
2747
+ ggml_tensor * src0 = dst->src [0 ]; // src0 [D, M, A, 1]
2748
+ ggml_tensor * src1 = dst->src [1 ]; // src1 [D, B, N, 1], B = K or B = 1
2749
+ ggml_tensor * ids = dst->src [2 ]; // ids [K, N]
2750
+
2751
+ GGML_TENSOR_BINARY_OP_LOCALS
2752
+
2753
+ // copy index from npu to cpu
2754
+ int64_t n_as = ne02; // A
2755
+ int64_t n_ids = ids->ne [0 ]; // K
2756
+
2757
+ std::vector<char > ids_host (ggml_nbytes (ids));
2758
+ ggml_cann_async_memcpy (ctx, ids_host.data (), ids->data , ggml_nbytes (ids),
2759
+ ACL_MEMCPY_DEVICE_TO_HOST);
2760
+ ACL_CHECK (aclrtSynchronizeStream (ctx.stream ()));
2761
+
2762
+ char * src0_original = (char *) src0->data ;
2763
+ char * src1_original = (char *) src1->data ;
2764
+ char * dst_original = (char *) dst->data ;
2765
+
2766
+ ggml_tensor src0_row = *src0;
2767
+ ggml_tensor src1_row = *src1;
2768
+ ggml_tensor dst_row = *dst;
2769
+
2770
+ const enum ggml_type type = dst->src [0 ]->type ;
2771
+ float weight_elem_size;
2772
+ if (type == GGML_TYPE_Q4_0) {
2773
+ weight_elem_size = float (sizeof (uint8_t )) / 2 ;
2774
+ } else if (type == GGML_TYPE_Q8_0) {
2775
+ weight_elem_size = float (sizeof (uint8_t ));
2776
+ } else {
2777
+ GGML_ABORT (" MUL_MAT_ID only support quant type Q4_0 and Q8_0 " );
2778
+ }
2779
+
2780
+ // src0_row [D, M, 1, 1] weight without permute
2781
+ src0_row.ne [2 ] = 1 ;
2782
+ src0_row.ne [3 ] = 1 ;
2783
+ src0_row.nb [0 ] = weight_elem_size;
2784
+ src0_row.nb [1 ] = weight_elem_size * ne00;
2785
+ src0_row.nb [2 ] = weight_elem_size * ne00;
2786
+ src0_row.nb [3 ] = weight_elem_size * ne00;
2787
+ size_t weight_stride = ne00 * ne01 * weight_elem_size;
2788
+ size_t weight_size = weight_stride * ne02 * ne03;
2789
+
2790
+ // scale [D, M, 1, 1] -> scale && permute
2791
+ size_t scale_elem_size = sizeof (uint16_t );
2792
+ size_t scale_stride = src0->ne [1 ] * src0->ne [0 ] / QK8_0 * scale_elem_size;
2793
+
2794
+ // src1_row [D, 1, 1, 1] -> input
2795
+ src1_row.ne [1 ] = 1 ;
2796
+ src1_row.ne [2 ] = 1 ;
2797
+ src1_row.ne [3 ] = 1 ;
2798
+ src1_row.nb [2 ] = nb11;
2799
+ src1_row.nb [3 ] = nb11;
2800
+
2801
+ // dst_row [M, 1, 1, 1] -> out
2802
+ dst_row.ne [1 ] = 1 ;
2803
+ dst_row.ne [2 ] = 1 ;
2804
+ dst_row.ne [3 ] = 1 ;
2805
+ dst_row.nb [2 ] = nb1;
2806
+ dst_row.nb [3 ] = nb1;
2807
+
2808
+ // create weight for one row
2809
+ ggml_cann_pool_alloc weight_allocator (ctx.pool ());
2810
+ void * weight_buffer = weight_allocator.alloc (nb02);
2811
+ for (int64_t iid1 = 0 ; iid1 < ids->ne [1 ]; iid1++) {
2812
+ for (int64_t id = 0 ; id < n_ids; id++) {
2813
+ // expert index
2814
+ int32_t i02 = *(int32_t *) (ids_host.data () + iid1*ids->nb [1 ] + id*ids->nb [0 ]);
2815
+ GGML_ASSERT (i02 >= 0 && i02 < n_as);
2816
+
2817
+ // If B = 1 (broadcast), always use 0; otherwise, use id.
2818
+ int64_t i11 = (ne11 == 1 ? 0 : id);
2819
+ int64_t i12 = iid1;
2820
+
2821
+ int64_t i1 = id;
2822
+ int64_t i2 = i12;
2823
+
2824
+ void * src0_tmp_ptr = src0_original + i02*weight_stride;
2825
+ void * scale_tmp_ptr = src0_original + weight_size + i02*scale_stride;
2826
+ void * src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
2827
+ void * dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
2828
+
2829
+ // mem cpy
2830
+ ggml_cann_async_memcpy (ctx, weight_buffer, src0_tmp_ptr, weight_stride,
2831
+ ACL_MEMCPY_DEVICE_TO_DEVICE);
2832
+ void * scale_buffer = (char *)weight_buffer + weight_stride;
2833
+ ggml_cann_async_memcpy (ctx, scale_buffer, scale_tmp_ptr, scale_stride,
2834
+ ACL_MEMCPY_DEVICE_TO_DEVICE);
2835
+
2836
+ src0_row.data = weight_buffer;
2837
+ src1_row.data = src1_tmp_ptr;
2838
+ dst_row.data = dst_tmp_ptr;
2839
+ dst_row.src [0 ] = &src0_row;
2840
+ dst_row.src [1 ] = &src1_row;
2841
+
2842
+ ggml_cann_mul_mat (ctx, &dst_row);
2843
+ }
2844
+ }
2845
+ return ;
2846
+ }
2847
+
2725
2848
void ggml_cann_mul_mat_id (ggml_backend_cann_context& ctx, ggml_tensor* dst) {
2726
2849
const enum ggml_type type = dst->src [0 ]->type ;
2727
2850
switch (type) {
2728
2851
case GGML_TYPE_F32:
2729
2852
case GGML_TYPE_F16:
2730
2853
ggml_cann_mul_mat_id_fp (ctx, dst);
2731
2854
break ;
2855
+ case GGML_TYPE_Q4_0:
2856
+ case GGML_TYPE_Q8_0:
2857
+ ggml_cann_mul_mat_id_quant (ctx, dst);
2858
+ break ;
2732
2859
default :
2733
2860
GGML_ABORT (" Unsupported type for mul_mat_id" );
2734
2861
break ;
0 commit comments