Skip to content

Commit e463b4f

Browse files
committed
Update main.cpp
1 parent 42110ff commit e463b4f

File tree

1 file changed

+39
-151
lines changed

1 file changed

+39
-151
lines changed

main.cpp

Lines changed: 39 additions & 151 deletions
Original file line numberDiff line numberDiff line change
@@ -47,25 +47,6 @@ void sigint_handler(int signo) {
4747
}
4848
#endif
4949

50-
const char * llama_print_system_info(void) {
51-
static std::string s;
52-
53-
s = "";
54-
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
55-
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
56-
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
57-
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
58-
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
59-
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
60-
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
61-
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
62-
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
63-
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
64-
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
65-
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
66-
67-
return s.c_str();
68-
}
6950

7051
int main(int argc, char ** argv) {
7152
ggml_time_init();
@@ -94,50 +75,24 @@ int main(int argc, char ** argv) {
9475

9576
int64_t t_load_us = 0;
9677

97-
gpt_vocab vocab;
98-
llama_model model;
99-
10078
// load the model
101-
{
102-
const int64_t t_start_us = ggml_time_us();
79+
const int64_t t_start_us = ggml_time_us();
80+
// TODO: FIXME: this is a hack
81+
llama_context* ctx_ptr = llama_init_from_params(params);
82+
llama_context & ctx = *ctx_ptr;
83+
gpt_vocab & vocab = llama_context_get_vocab(ctx);
10384

104-
if (!llama_model_load(params.model, model, vocab, 512)) { // TODO: set context from user input ??
105-
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
106-
return 1;
107-
}
108-
109-
t_load_us = ggml_time_us() - t_start_us;
110-
}
85+
t_load_us = ggml_time_us() - t_start_us;
11186

11287
// print system information
113-
{
114-
fprintf(stderr, "\n");
115-
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
116-
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
117-
}
118-
119-
int n_past = 0;
120-
121-
int64_t t_sample_us = 0;
122-
int64_t t_predict_us = 0;
123-
124-
std::vector<float> logits;
88+
llama_print_context_info(ctx);
12589

12690
// tokenize the prompt
127-
std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
128-
129-
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
91+
std::vector<gpt_vocab::id> embd_inp = llama_tokenize_text(ctx, params.prompt);
13092

13193
// tokenize the reverse prompt
132-
std::vector<gpt_vocab::id> antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false);
94+
std::vector<gpt_vocab::id> antiprompt_inp = llama_tokenize_text(ctx, params.prompt);
13395

134-
fprintf(stderr, "\n");
135-
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
136-
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
137-
for (int i = 0; i < (int) embd_inp.size(); i++) {
138-
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
139-
}
140-
fprintf(stderr, "\n");
14196
if (params.interactive) {
14297
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
14398
struct sigaction sigint_action;
@@ -161,17 +116,6 @@ int main(int argc, char ** argv) {
161116
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
162117
fprintf(stderr, "\n\n");
163118

164-
std::vector<gpt_vocab::id> embd;
165-
166-
// determine the required inference memory per token:
167-
size_t mem_per_token = 0;
168-
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
169-
170-
int last_n_size = params.repeat_last_n;
171-
std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
172-
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
173-
174-
175119
if (params.interactive) {
176120
fprintf(stderr, "== Running in interactive mode. ==\n"
177121
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
@@ -181,8 +125,6 @@ int main(int argc, char ** argv) {
181125
" - If you want to submit another line, end your input in '\\'.\n");
182126
}
183127

184-
int remaining_tokens = params.n_predict;
185-
int input_consumed = 0;
186128
bool input_noecho = false;
187129

188130
// prompt user immediately after the starting prompt has been loaded
@@ -195,81 +137,39 @@ int main(int argc, char ** argv) {
195137
printf(ANSI_COLOR_YELLOW);
196138
}
197139

198-
while (remaining_tokens > 0) {
199-
// predict
200-
if (embd.size() > 0) {
201-
const int64_t t_start_us = ggml_time_us();
202-
203-
if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
204-
fprintf(stderr, "Failed to predict\n");
205-
return 1;
206-
}
207-
208-
t_predict_us += ggml_time_us() - t_start_us;
209-
}
210-
211-
n_past += embd.size();
212-
embd.clear();
213-
214-
if (embd_inp.size() <= input_consumed) {
215-
// out of user input, sample next token
216-
const float top_k = params.top_k;
217-
const float top_p = params.top_p;
218-
const float temp = params.temp;
219-
const float repeat_penalty = params.repeat_penalty;
220-
221-
const int n_vocab = model.hparams.n_vocab;
222-
223-
gpt_vocab::id id = 0;
224-
225-
{
226-
const int64_t t_start_sample_us = ggml_time_us();
227-
228-
id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
229-
230-
last_n_tokens.erase(last_n_tokens.begin());
231-
last_n_tokens.push_back(id);
232-
233-
t_sample_us += ggml_time_us() - t_start_sample_us;
234-
}
140+
if(!llama_injest_input(ctx, params.prompt))
141+
{
142+
fprintf(stderr, "Failed to injest prompt\n");
143+
return 1;
144+
};
235145

236-
// add it to the context
237-
embd.push_back(id);
146+
// display text
147+
input_noecho = false;
148+
const std::vector<gpt_vocab::id>& embd = llama_context_get_embd(ctx);
149+
if (!input_noecho) {
150+
for (auto id : embd) {
151+
printf("%s", vocab.id_to_token[id].c_str());
152+
}
153+
fflush(stdout);
154+
}
238155

239-
// echo this to console
240-
input_noecho = false;
156+
if (!input_noecho && params.use_color) {
157+
printf(ANSI_COLOR_RESET);
158+
}
241159

242-
// decrement remaining sampling budget
243-
--remaining_tokens;
244-
} else {
245-
// some user input remains from prompt or interaction, forward it to processing
246-
// Copy at most n_batch elements from embd_inp to embd
247-
size_t num_copied = std::min((size_t) params.n_batch, embd_inp.size() - input_consumed);
248-
std::copy(embd_inp.begin() + input_consumed, embd_inp.begin() + input_consumed + num_copied, std::back_inserter(embd));
249-
input_consumed += num_copied;
250-
251-
// Copy the last `last_n_size` elements copied into embd to last_n_tokens
252-
size_t num_copied_last_n = std::min(num_copied, (size_t) last_n_size);
253-
last_n_tokens.erase(last_n_tokens.begin(), last_n_tokens.begin()+num_copied_last_n);
254-
last_n_tokens.insert(last_n_tokens.end(), embd.end() - num_copied_last_n, embd.end());
255-
256-
// reset color to default if we there is no pending user input
257-
if (!input_noecho && params.use_color && embd_inp.size() == input_consumed) {
258-
printf(ANSI_COLOR_RESET);
259-
}
260-
}
160+
const std::vector<gpt_vocab::id>& last_n_tokens = llama_context_get_last_n_tokens(ctx);
261161

262-
// display text
263-
if (!input_noecho) {
264-
for (auto id : embd) {
265-
printf("%s", vocab.id_to_token[id].c_str());
266-
}
162+
while (llama_context_not_finished(ctx) > 0) {
163+
std::optional<gpt_vocab::id> model_output = llama_inference(ctx);
164+
if (model_output.has_value()) {
165+
printf("%s", vocab.id_to_token[model_output.value()].c_str());
267166
fflush(stdout);
268167
}
269168

169+
270170
// in interactive mode, and not currently processing queued inputs;
271171
// check if we should prompt the user for more
272-
if (params.interactive && embd_inp.size() <= input_consumed) {
172+
if (params.interactive) {
273173
// check for reverse prompt
274174
if (antiprompt_inp.size() && std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(), last_n_tokens.rbegin())) {
275175
// reverse prompt found
@@ -299,13 +199,8 @@ int main(int argc, char ** argv) {
299199
buf[n_read] = '\n';
300200
buf[n_read+1] = 0;
301201
}
302-
303-
std::vector<gpt_vocab::id> line_inp = ::llama_tokenize(vocab, buf, false);
304-
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
305-
306-
remaining_tokens -= line_inp.size();
307-
308-
input_noecho = true; // do not echo this again
202+
// Do not clear existing context in interactive mode
203+
llama_init_context_with_prompt(ctx, buf, false);
309204
}
310205

311206
is_interacting = false;
@@ -318,21 +213,14 @@ int main(int argc, char ** argv) {
318213
break;
319214
}
320215
}
321-
322-
323-
// report timing
216+
217+
// mmreport timing from context
324218
{
325219
const int64_t t_main_end_us = ggml_time_us();
326-
327-
fprintf(stderr, "\n\n");
328-
fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
329-
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
330-
fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
331-
fprintf(stderr, "%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
220+
llama_print_end_stats(ctx);
332221
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
333222
}
334-
335-
ggml_free(model.ctx);
223+
llama_free_context(ctx_ptr);
336224

337225
return 0;
338226
}

0 commit comments

Comments
 (0)