5
5
6
6
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
7
7
8
+ shared FLOAT_TYPE sccache1[BLOCK_SIZE/16][16];
9
+ shared FLOAT_TYPE sccache2[BLOCK_SIZE/16][16];
10
+
11
+ FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
12
+
13
+ void calc_superblock(const uint a_offset, const uint b_offset, const uint itid, const uint v_im, const uint ix, const uint q_offset, const uint y_offset, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows, const bool all_threads) {
14
+ const uint y_idx = i * QUANT_K + y_offset;
15
+
16
+ [[unroll]] for (uint n = 0; n < num_rows; ++n) {
17
+ const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
18
+
19
+ barrier();
20
+ if (!all_threads) { // when we don't have enough blocks to use all threads
21
+ if (i < num_blocks_per_row) {
22
+ const uint32_t scale = uint32_t(data_a[ib0 + i].scales[itid]);
23
+ sccache1[ix][itid] = FLOAT_TYPE(scale & 0xF);
24
+ sccache2[ix][itid] = FLOAT_TYPE((scale >> 4) & 0xF);
25
+ }
26
+ barrier();
27
+
28
+ if (i >= num_blocks_per_row)
29
+ continue;
30
+ } else {
31
+ const uint32_t scale = uint32_t(data_a[ib0 + i].scales[itid]);
32
+ sccache1[ix][itid] = FLOAT_TYPE(scale & 0xF);
33
+ sccache2[ix][itid] = FLOAT_TYPE((scale >> 4) & 0xF);
34
+ barrier();
35
+ }
36
+
37
+ const uint32_t qs_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16);
38
+ const vec4 qs_u32_0 = vec4(unpack8(qs_u32 & 0x03030303));
39
+ const vec4 qs_u32_2 = vec4(unpack8((qs_u32 >> 2) & 0x03030303));
40
+ const vec4 qs_u32_4 = vec4(unpack8((qs_u32 >> 4) & 0x03030303));
41
+ const vec4 qs_u32_6 = vec4(unpack8((qs_u32 >> 6) & 0x03030303));
42
+
43
+ vec2 d = vec2(data_a[ib0 + i].d);
44
+ const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
45
+ const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
46
+
47
+ [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
48
+ vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
49
+ vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
50
+ vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
51
+ vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
52
+ vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
53
+ vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
54
+ vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
55
+ vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);
56
+
57
+ FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
58
+ FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
59
+ [[unroll]] for (int l = 0; l < 2; ++l) {
60
+ sum1 = fma(FLOAT_TYPE(b0[l]), sccache1[ix][ 8*v_im] * qs_u32_0[l ],
61
+ fma(FLOAT_TYPE(b16[l]), sccache1[ix][1 + 8*v_im] * qs_u32_0[l+2],
62
+ fma(FLOAT_TYPE(b32[l]), sccache1[ix][2 + 8*v_im] * qs_u32_2[l ],
63
+ fma(FLOAT_TYPE(b48[l]), sccache1[ix][3 + 8*v_im] * qs_u32_2[l+2],
64
+ fma(FLOAT_TYPE(b64[l]), sccache1[ix][4 + 8*v_im] * qs_u32_4[l ],
65
+ fma(FLOAT_TYPE(b80[l]), sccache1[ix][5 + 8*v_im] * qs_u32_4[l+2],
66
+ fma(FLOAT_TYPE(b96[l]), sccache1[ix][6 + 8*v_im] * qs_u32_6[l ],
67
+ fma(FLOAT_TYPE(b112[l]), sccache1[ix][7 + 8*v_im] * qs_u32_6[l+2], sum1))))))));
68
+ sum2 = fma(FLOAT_TYPE(b0[l]), sccache2[ix][ 8*v_im],
69
+ fma(FLOAT_TYPE(b16[l]), sccache2[ix][1 + 8*v_im],
70
+ fma(FLOAT_TYPE(b32[l]), sccache2[ix][2 + 8*v_im],
71
+ fma(FLOAT_TYPE(b48[l]), sccache2[ix][3 + 8*v_im],
72
+ fma(FLOAT_TYPE(b64[l]), sccache2[ix][4 + 8*v_im],
73
+ fma(FLOAT_TYPE(b80[l]), sccache2[ix][5 + 8*v_im],
74
+ fma(FLOAT_TYPE(b96[l]), sccache2[ix][6 + 8*v_im],
75
+ fma(FLOAT_TYPE(b112[l]), sccache2[ix][7 + 8*v_im], sum2))))))));
76
+ }
77
+ temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n]));
78
+ }
79
+ }
80
+ }
81
+
8
82
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
9
83
uint a_offset, b_offset, d_offset;
10
84
get_offsets(a_offset, b_offset, d_offset);
@@ -14,88 +88,28 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
14
88
// 16 threads are used to process each block
15
89
const uint it_size = gl_WorkGroupSize.x/16;
16
90
const uint tid = gl_LocalInvocationID.x;
17
- const uint itid = tid%16; // 0...16
18
- const uint ix = tid/16;
19
-
20
- const uint step = 8;
91
+ const uint itid = tid%16; // 0...15
92
+ const uint ix = tid/16;
21
93
22
- const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
23
- const uint v_in = itid - step *v_im; // 0...15 or 0...7
94
+ const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128...
95
+ const uint v_in = itid - 8 *v_im; // 0...7
24
96
25
97
const uint l0 = 2*v_in; // 0...15
26
98
const uint q_offset = 32*v_im + l0;
27
- const uint s_offset = 8*v_im;
28
99
const uint y_offset = 128*v_im + l0;
29
100
30
- FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
31
-
32
101
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
33
102
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
34
103
temp[j][i] = FLOAT_TYPE(0);
35
104
}
36
105
}
37
106
38
- [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
39
- const uint y_idx = i * QUANT_K + y_offset;
40
-
41
- [[unroll]] for (uint n = 0; n < num_rows; ++n) {
42
- const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
43
- vec2 d = vec2(data_a[ib0 + i].d);
44
- const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
45
- const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
46
-
47
- uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
48
- uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
49
-
50
- uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F;
51
- uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F;
52
- uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F;
53
- uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F;
54
-
55
- uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32));
56
- uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32));
57
- uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32));
58
- uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32));
59
-
60
- uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0];
61
- uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8];
62
- uvec2 qs0 = uvec2(unpack8(qs0_u16));
63
- uvec2 qs16 = uvec2(unpack8(qs16_u16));
64
-
65
- [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
66
- vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
67
- vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
68
- vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
69
- vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
70
- vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
71
- vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
72
- vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
73
- vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);
74
-
75
- FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
76
- FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
77
- [[unroll]] for (int l = 0; l < 2; ++l) {
78
- sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
79
- fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
80
- fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
81
- fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
82
- fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
83
- fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
84
- fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
85
- fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
86
- sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
87
- fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
88
- fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
89
- fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
90
- fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
91
- fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
92
- fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
93
- fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
94
- }
95
- temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n]));
96
- }
97
- }
98
- }
107
+ const uint nbr_par_th = num_blocks_per_row%it_size;
108
+ const uint nbr_all_th = num_blocks_per_row - nbr_par_th;
109
+ uint i0 = 0;
110
+ [[unroll]] for (; i0 < nbr_all_th; i0 += it_size)
111
+ calc_superblock(a_offset, b_offset, itid, v_im, ix, q_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, true);
112
+ calc_superblock(a_offset, b_offset, itid, v_im, ix, q_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, false);
99
113
100
114
reduce_result(temp, d_offset, first_row, num_rows, tid);
101
115
}
0 commit comments