Skip to content

Commit 4cc78d3

Browse files
committed
ggml : force F32 precision for ggml_mul_mat
1 parent 0ef3ca2 commit 4cc78d3

File tree

2 files changed

+59
-19
lines changed

2 files changed

+59
-19
lines changed

ggml-cuda.cu

Lines changed: 53 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -7579,8 +7579,7 @@ static void ggml_cuda_op_mul_mat_cublas(
75797579

75807580
const int compute_capability = g_device_caps[id].cc;
75817581

7582-
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
7583-
//printf("this branch\n");
7582+
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
75847583
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
75857584
cuda_pool_alloc<half> src0_as_f16;
75867585
if (src0->type != GGML_TYPE_F16) {
@@ -7601,23 +7600,44 @@ static void ggml_cuda_op_mul_mat_cublas(
76017600
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
76027601
}
76037602
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
7604-
cuda_pool_alloc<half> dst_f16(row_diff*src1_ncols);
76057603

7606-
const half alpha_f16 = 1.0f;
7607-
const half beta_f16 = 0.0f;
7608-
7609-
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
7610-
CUBLAS_CHECK(
7611-
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
7612-
row_diff, src1_ncols, ne10,
7613-
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
7614-
src1_ptr, CUDA_R_16F, ne10,
7615-
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
7616-
CUBLAS_COMPUTE_16F,
7617-
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
7618-
7619-
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
7620-
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
7604+
switch (dst->op_params[0]) {
7605+
case GGML_PREC_DEFAULT:
7606+
{
7607+
cuda_pool_alloc<half> dst_f16(row_diff*src1_ncols);
7608+
7609+
const half alpha_f16 = 1.0f;
7610+
const half beta_f16 = 0.0f;
7611+
7612+
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
7613+
CUBLAS_CHECK(
7614+
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
7615+
row_diff, src1_ncols, ne10,
7616+
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
7617+
src1_ptr, CUDA_R_16F, ne10,
7618+
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
7619+
CUBLAS_COMPUTE_16F,
7620+
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
7621+
7622+
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
7623+
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
7624+
} break;
7625+
case GGML_PREC_F32:
7626+
{
7627+
const float alpha_f32 = 1.0f;
7628+
const float beta_f32 = 0.0f;
7629+
7630+
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
7631+
CUBLAS_CHECK(
7632+
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
7633+
row_diff, src1_ncols, ne10,
7634+
&alpha_f32, src0_ptr, CUDA_R_16F, ne00,
7635+
src1_ptr, CUDA_R_16F, ne10,
7636+
&beta_f32, dst_dd_i, CUDA_R_32F, ldc,
7637+
CUBLAS_COMPUTE_32F,
7638+
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
7639+
} break;
7640+
}
76217641
} else {
76227642
cuda_pool_alloc<float> src0_ddq_as_f32;
76237643
cuda_pool_alloc<float> src1_ddq_as_f32;
@@ -7635,7 +7655,7 @@ static void ggml_cuda_op_mul_mat_cublas(
76357655
to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
76367656
}
76377657

7638-
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
7658+
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
76397659
const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
76407660

76417661
const float alpha = 1.0f;
@@ -9234,6 +9254,20 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
92349254
}
92359255

92369256
void ggml_cuda_free_data(struct ggml_tensor * tensor) {
9257+
// print current mem usage using cudaMemGetInfo
9258+
// TODO: this is a hack - need better solution
9259+
{
9260+
size_t free;
9261+
size_t total;
9262+
CUDA_CHECK(cudaMemGetInfo(&free, &total));
9263+
9264+
static size_t used = 0;
9265+
if (used < total - free) {
9266+
printf("CUDA: used %zu MB, free %zu MB\n", (total - free)/1024/1024, free/1024/1024);
9267+
used = total - free;
9268+
}
9269+
}
9270+
92379271
if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
92389272
return;
92399273
}

ggml.c

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4077,6 +4077,12 @@ struct ggml_tensor * ggml_mul_mat(
40774077
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
40784078
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
40794079

4080+
// TMP: force f32 precision
4081+
{
4082+
const int32_t prec_i32 = GGML_PREC_F32;
4083+
ggml_set_op_params_i32(result, 0, prec_i32);
4084+
}
4085+
40804086
result->op = GGML_OP_MUL_MAT;
40814087
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
40824088
result->src[0] = a;

0 commit comments

Comments
 (0)