-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfinetune.py
93 lines (75 loc) · 3.41 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import determined as det
import evaluate
from determined.transformers import DetCallback
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from trl import DataCollatorForCompletionOnlyLM
from chat_format import ASSISTANT_PROMPT, CHAT_ML_TEMPLATE, EOS_TOKEN, get_chat_format
from dataset_utils import load_or_create_dataset
def get_model_and_tokenizer(model_name):
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, eos_token=EOS_TOKEN)
tokenizer.chat_template = CHAT_ML_TEMPLATE
return model, tokenizer
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
def main(training_args, det_callback, hparams):
model_name = hparams["model"]
model, tokenizer = get_model_and_tokenizer(model_name)
def tokenize(element):
formatted = tokenizer.apply_chat_template(
get_chat_format(element), tokenize=False
)
outputs = tokenizer(formatted)
return {
"input_ids": outputs["input_ids"],
"attention_mask": outputs["attention_mask"],
}
dataset = load_or_create_dataset(hparams["dataset_subset"])
for k in dataset.keys():
dataset[k] = dataset[k].map(tokenize)
response_template_ids = tokenizer.encode(ASSISTANT_PROMPT, add_special_tokens=False)
collator = DataCollatorForCompletionOnlyLM(
response_template_ids, tokenizer=tokenizer
)
bleu = evaluate.load("bleu")
acc = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics but we need to shift the labels
labels = labels[:, 1:]
preds = preds[:, :-1]
# -100 is a default value for ignore_index used by DataCollatorForCompletionOnlyLM
mask = labels == -100
labels[mask] = tokenizer.pad_token_id
preds[mask] = tokenizer.pad_token_id
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
bleu_score = bleu.compute(predictions=decoded_preds, references=decoded_labels)
accuracy = acc.compute(predictions=preds[~mask], references=labels[~mask])
return {**bleu_score, **accuracy}
trainer = Trainer(
args=training_args,
model=model,
tokenizer=tokenizer,
data_collator=collator,
train_dataset=dataset["train"],
eval_dataset=dataset["valid"],
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
compute_metrics=compute_metrics,
)
trainer.add_callback(det_callback)
trainer.evaluate()
trainer.train()
if __name__ == "__main__":
info = det.get_cluster_info()
hparams = info.trial.hparams
distributed = det.core.DistributedContext.from_torch_distributed()
with det.core.init(distributed=distributed) as core_context:
training_args = TrainingArguments(**hparams["training_args"])
det_callback = DetCallback(core_context, training_args)
main(training_args, det_callback, hparams)