-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetCITS.py
executable file
·506 lines (450 loc) · 14.8 KB
/
getCITS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import parseSTM as ps
import numpy as np
import matplotlib.pyplot as plt
import pywt
import argparse
from scipy.interpolate import interp1d
from skimage.filters import gaussian
from skimage.morphology import square
from scipy.signal import convolve2d
from pathlib import Path
import imageio
from os import remove
from myImageToolset import destripe_by_wavelet_svd
from detrend2d import subtract_plane
from scipy import interpolate, signal, fftpack
spectra_ylabels = {
"original": "Tunneling Current, A",
"didv": "Conductance, A/V",
"dos": "Density of states",
"logiv": "Tunneling Current, A",
}
def mean_filter_2d(img, kernel_size=2):
kernel = square(int(kernel_size), dtype="float")
kernel = kernel / np.sum(kernel ** 2)
return convolve2d(img, kernel, boundary="symm", mode="same")
def _parseargs():
parser = argparse.ArgumentParser(
description="Function to extract CITS from Lyding STM files\n",
epilog="Developed by Huy Nguyen in Gruebele and Lyding groups\n"
"University of Illinois at Urbana-Champaign\n\n",
)
parser.add_argument(
"input",
nargs="*",
type=str,
help="Lyding STM file(s). Contact [email protected] for more information",
)
parser.add_argument(
"--raw", "-r", action="store_true", help="Use raw CITS data"
)
parser.add_argument(
"--wavelet",
"-w",
help="Wavelet used to smooth the CITS data. Values are discrete wavelets available under pywt package.",
type=str,
default="db7",
)
parser.add_argument(
"--level",
"-l",
help="Level of wavelet filtering used in smoothing the CITS data.",
type=int,
default=None,
)
parser.add_argument(
"--movie",
"-m",
help="Make a movie out of the voltage deck",
action="store_true",
)
parser.add_argument(
"--voltage",
"-v",
type=float,
help="Voltage at which to extract CITS data",
nargs="*",
# required=True,
)
parser.add_argument(
"--buftype",
"-t",
type=str,
help="Buffer types to extract from CITS data. Available values: topo, didv, dos, logIV.",
default="original",
)
parser.add_argument(
"--bufsmooth",
"-f",
help="Smooth buffer with a gaussian (or mean) filter where sigma (or kernel size) equals the specified pixel",
type=float,
)
parser.add_argument(
"--mean-filter",
"-b",
help="Use a mean filter instead of a gaussian blur to smooth the buffers",
action="store_true",
)
parser.add_argument(
"--buflogscale",
"-e",
help="Show the buffer with logscale",
action="store_true",
)
parser.add_argument(
"--colormap",
"-a",
help="Colormap in which to save buffers",
type=str,
default="inferno",
)
parser.add_argument(
"--dpi",
"-p",
help="DPI of the saved figure(s)",
type=float,
default=300,
)
parser.add_argument(
"--spectype",
"-s",
type=str,
help="Spectral types to extract from CITS data. Available values: didv, dos, logIV.",
default="original",
)
parser.add_argument(
"--coordinates",
"-c",
help="XY coordinates (left-right, top-down) of the pixel to extract spectra",
nargs="*",
type=float,
)
parser.add_argument(
"--specfromsmoothed",
"-k",
action="store_true",
help="Extract spectra after smoothing buffers with a gaussian with a sigma of bufsmooth",
)
parser.add_argument(
"--clim",
"-d",
help="Low and high percentages of color limits for the whole CITS STACK.",
nargs=2,
type=float,
default=[0.3, 95],
)
args = parser.parse_args()
return args
def wavelet_filter_1d(arr, wavelet_type="db3", level=3, threshold_mode="soft"):
arr = np.array(arr).flatten()
coeffs = pywt.wavedec(arr, wavelet_type, level=level)
approx = coeffs[0]
detail = coeffs[1:]
# coeffs[1:] = [
# pywt.threshold(coeff, np.std(coeff) * 3, mode=threshold_mode)
# for coeff in coeffs[1:]
# ]
coeffs_filt = [approx]
for nlevel in detail:
fdetail = fftpack.rfft(nlevel)
# b, a = signal.butter(6, 0.1, btype="low")
# fdetail = signal.filtfilt(b, a, fdetail, padlen=5)
fdetail = pywt.threshold(
fdetail, np.std(fdetail) * 3, mode=threshold_mode
)
coeffs_filt.append(fftpack.irfft(fdetail))
return pywt.waverec(coeffs_filt, wavelet_type)
# def wavelet_filter_3d(array3d, wavelet="db20", level=2):
# coeffs = pywt.wavedecn(array3d, wavelet=wavelet, level=level, axes=0)
# coeffs[1:] = [
# {"d": pywt.threshold(coeff["d"], np.std(coeff["d"]) * 3)}
# for coeff in coeffs[1:]
# ]
# return pywt.waverecn(coeffs, wavelet=wavelet, axes=0)
def wavelet_filter_3d(array3d, wavelet="db3", level=3):
return np.apply_along_axis(
wavelet_filter_1d, 0, array3d, wavelet, level, "soft"
)
def get_cits_blocks(stmfile, raw=False, wavelet="sym7", level=None):
cits_blocks = []
orig_blocks = stmfile.cits_blocks
cits_bias = stmfile.cits_bias
for block in orig_blocks.values():
cits_blocks.append([cits_bias, block.data])
if not raw:
for i in range(len(cits_blocks)):
cits_blocks[i][1] = wavelet_filter_3d(
cits_blocks[i][1], wavelet=wavelet, level=level
)
return cits_blocks
def interpolate_cits_block(cits_block):
interp_block = interp1d(cits_block[0], cits_block[1], kind="cubic", axis=0)
return interp_block
def interpolate_cits(cits_blocks):
interp_blocks = []
for block in cits_blocks:
interp_blocks.append(interpolate_cits_block(block))
return interp_blocks
def find_didv_cits(cits_block, logscale=False):
out = np.abs(np.gradient(cits_block[1], cits_block[0], axis=0))
if logscale:
out = np.log10(out)
return [cits_block[0], out]
def suppress_peak(arr, suppress_indices):
segment = np.array(arr)
segment[suppress_indices] = np.interp(
suppress_indices,
[
suppress_indices[0],
suppress_indices[1],
suppress_indices[-1],
suppress_indices[-2],
],
[
segment[suppress_indices[0]],
segment[suppress_indices[1]],
segment[suppress_indices[-1]],
segment[suppress_indices[-2]],
],
)
return segment
def find_dos_cits(cits_block, logscale=False):
logI = np.log(np.abs(cits_block[1]))
logV = np.log(np.abs(cits_block[0]))
out = np.abs(np.gradient(logI, logV, axis=0))
suppress_indices = []
for i, volt in enumerate(cits_block[0]):
if volt >= -0.15 and volt <= 0.15:
suppress_indices.append(i)
suppress_indices = np.array(suppress_indices)
out = np.apply_along_axis(suppress_peak, 0, out, suppress_indices)
if logscale:
out = np.log10(out)
return [cits_block[0], out]
def find_logiv_cits(cits_block):
logI = np.log10(np.abs(cits_block[1]))
return [cits_block[0], logI]
def smooth_cits(cits_block, size=1, mean_filter=False):
new_cits_block = cits_block.copy()
for i in range(new_cits_block[1].shape[0]):
if mean_filter:
new_cits_block[1][i] = mean_filter_2d(
new_cits_block[1][i], kernel_size=size
)
else:
new_cits_block[1][i] = gaussian(new_cits_block[1][i], sigma=size)
return new_cits_block
def get_spectra(
cits_block,
coordinates,
spectype="original",
specfromsmoothed=False,
bufsmooth=1,
mean_filter=False,
):
"""spectra is a list of 2-item tuples: [(bias, 1Ddata)]"""
spectra = []
process_block = [(0, 0)]
if spectype.lower() == "didv":
process_block = find_didv_cits(cits_block)
elif spectype.lower() == "dos":
process_block = find_dos_cits(cits_block)
elif spectype.lower() == "logiv":
process_block = find_logiv_cits(cits_block)
else:
process_block = cits_block.copy()
if specfromsmoothed:
process_block = smooth_cits(
process_block, bufsmooth, mean_filter=mean_filter
)
for coord in coordinates:
spectra.append(
(process_block[0], process_block[1][:, coord[1], coord[0]], coord)
)
return spectra
def get_cits_buf_from_voltage(cits_block, voltages):
buf_list = []
block = interpolate_cits_block(cits_block)
for voltage in voltages:
if (
block.x[0] <= voltage <= block.x[-1]
or block.x[0] >= voltage >= block.x[-1]
):
buf_list.append([voltage, block(voltage)])
return buf_list
def make_figures(
buf_list,
spectra=None,
buftype="original",
spectype="original",
cmap="inferno",
dpi=300,
bufsmooth=None,
prefix="",
mean_filter=False,
):
if buf_list is not None:
for buf in buf_list:
fig, ax = plt.subplots()
if bufsmooth is not None:
if mean_filter:
buf[1] = mean_filter_2d(buf[1], bufsmooth)
else:
buf[1] = gaussian(buf[1], bufsmooth)
ax.imshow(buf[1], cmap=cmap)
ax.axis("off")
fig.savefig(
f"{prefix}.{buftype}_{buf[0]}V.tiff",
bbox_inches="tight",
pad_inches=0,
pil_kwargs={"compression": "tiff_lzw"},
dpi=dpi,
)
plt.close(fig)
if spectra is not None:
for spec in spectra:
fig, ax = plt.subplots()
ax.plot(spec[0], spec[1], ms=0, lw=1, label=str(spec[2]))
ax.set_xlabel("Bias Voltage, V")
if spectype in spectra_ylabels:
ax.set_ylabel(spectra_ylabels[spectype.lower()])
else:
ax.set_ylabel(spectra_ylabels["original"])
ax.legend()
fig.savefig(
f"{prefix}.{str(spec[2])}.tiff",
# bbox_inches="tight",
# pad_inches=0,
pil_kwargs={"compression": "tiff_lzw"},
dpi=dpi,
)
plt.close(fig)
def make_movie(
cits_block,
buftype="current",
bufsmooth=None,
cmap="inferno",
prefix="",
mean_filter=False,
clim=(0.3, 95),
):
x, y = cits_block[1][0].shape
cits_block_cp = cits_block.copy()
fig, ax = plt.subplots()
if bufsmooth is not None:
cits_block_cp = smooth_cits(
cits_block_cp, bufsmooth, mean_filter=mean_filter
)
clim = [
np.percentile(cits_block_cp[1], clim[0]),
np.percentile(cits_block_cp[1], clim[1]),
]
fig.tight_layout()
frame_list = []
for n in range(len(cits_block_cp[1])):
ax.cla()
ax.axis("off")
im = ax.imshow(cits_block_cp[1][n], cmap=cmap)
im.set_clim(clim)
ax.annotate(
f"{cits_block_cp[0][n]:.2f} V",
xy=(1,1),
xycoords="axes fraction",
size=int(0.3 * x),
horizontalalignment="right",
verticalalignment="top",
color="white",
# bbox=dict(boxstyle="round4,pad=.5", fc="0.9"),
)
fig.savefig("./temp.tiff", dpi=100, pad_inches=0)
frame_list.append(imageio.imread("./temp.tiff"))
imageio.mimwrite(f"./{prefix}.cits_{buftype}.mov", frame_list, fps=5)
remove("./temp.tiff")
plt.close(fig)
def main():
args = _parseargs()
input_files = [Path(inp) for inp in args.input]
for inp in input_files:
stmf = ps.STMfile(inp)
ydim, xdim = stmf.dimensions
if args.buftype == "topo":
topo = stmf.get_buffers([1])[1]
topo = subtract_plane(topo)
topo = destripe_by_wavelet_svd(topo)
topo = np.clip(
topo, np.percentile(topo, 0.5), np.percentile(topo, 99.5)
)
np.save(f"{inp}.topo.npy", topo)
fig, ax = plt.subplots()
ax.imshow(topo, cmap="afmhot")
ax.axis("off")
fig.savefig(
f"{inp}.topo.tiff",
pil_kwargs={"compression": "tiff_lzw"},
dpi=args.dpi,
bbox_inches="tight",
pad_inches=0,
)
continue
citsblocks = get_cits_blocks(
stmf, raw=args.raw, wavelet=args.wavelet, level=args.level
)
for block in citsblocks:
to_get = block.copy()
buf_list = None
if args.buftype is not None:
if args.buftype.lower() == "didv":
to_get = find_didv_cits(block, logscale=args.buflogscale)
elif args.buftype.lower() == "dos":
to_get = find_dos_cits(block, logscale=args.buflogscale)
elif args.buftype.lower() == "logiv":
to_get = find_logiv_cits(block)
else:
pass
else:
pass
if args.voltage is not None:
buf_list = get_cits_buf_from_voltage(to_get, args.voltage)
if args.coordinates is not None:
coordinates = []
for coord in args.coordinates:
if coord >= 1:
coordinates.append(int(coord))
else:
coordinates.append(int(coord * xdim))
coordinates = np.array(coordinates).reshape((-1, 2))
# coordinates = (np.reshape(args.coordinates, (-1, 2)) * xdim).astype("int")
spectra = get_spectra(
block,
coordinates,
args.spectype,
specfromsmoothed=args.specfromsmoothed,
bufsmooth=args.bufsmooth,
mean_filter=args.mean_filter,
)
else:
spectra = []
make_figures(
buf_list,
spectra,
args.buftype,
args.spectype,
cmap=args.colormap,
dpi=args.dpi,
bufsmooth=args.bufsmooth,
prefix=inp,
mean_filter=args.mean_filter,
)
np.savez(f"./{inp}.cits_{args.buftype}.npz", *to_get)
if args.movie:
make_movie(
to_get,
args.buftype,
args.bufsmooth,
args.colormap,
prefix=inp,
mean_filter=args.mean_filter,
clim=args.clim,
)
if __name__ == "__main__":
main()