|
| 1 | +from collections.abc import Hashable, Mapping |
| 2 | +from typing import Any |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +from affine import Affine |
| 6 | +from xarray import DataArray, Index, Variable |
| 7 | +# TODO: import from public API once it is available |
| 8 | +from xarray.core.indexes import CoordinateTransformIndex, PandasIndex |
| 9 | +from xarray.core.indexing import IndexSelResult, merge_sel_results |
| 10 | +from xarray.core.coordinate_transform import CoordinateTransform |
| 11 | + |
| 12 | + |
| 13 | +class AffineTransform(CoordinateTransform): |
| 14 | + """Affine 2D transform wrapper.""" |
| 15 | + |
| 16 | + affine: Affine |
| 17 | + xy_dims: tuple[str, str] |
| 18 | + |
| 19 | + def __init__( |
| 20 | + self, |
| 21 | + affine: Affine, |
| 22 | + width: int, |
| 23 | + height: int, |
| 24 | + x_dim: str = "x", |
| 25 | + y_dim: str = "y", |
| 26 | + dtype: Any = np.dtype(np.float64), |
| 27 | + ): |
| 28 | + super().__init__((x_dim, y_dim), {x_dim: width, y_dim: height}, dtype=dtype) |
| 29 | + self.affine = affine |
| 30 | + |
| 31 | + # array dimensions in reverse order (y = rows, x = cols) |
| 32 | + self.xy_dims = self.dims[0], self.dims[1] |
| 33 | + self.dims = self.dims[1], self.dims[0] |
| 34 | + |
| 35 | + def forward(self, dim_positions): |
| 36 | + positions = tuple(dim_positions[dim] for dim in self.xy_dims) |
| 37 | + x_labels, y_labels = self.affine * positions |
| 38 | + |
| 39 | + results = {} |
| 40 | + for name, labels in zip(self.coord_names, [x_labels, y_labels]): |
| 41 | + results[name] = labels |
| 42 | + |
| 43 | + return results |
| 44 | + |
| 45 | + def reverse(self, coord_labels): |
| 46 | + labels = tuple(coord_labels[name] for name in self.coord_names) |
| 47 | + x_positions, y_positions = ~self.affine * labels |
| 48 | + |
| 49 | + results = {} |
| 50 | + for dim, positions in zip(self.xy_dims, [x_positions, y_positions]): |
| 51 | + results[dim] = positions |
| 52 | + |
| 53 | + return results |
| 54 | + |
| 55 | + def equals(self, other): |
| 56 | + if not isinstance(other, AffineTransform): |
| 57 | + return False |
| 58 | + return self.affine == other.affine and self.dim_size == other.dim_size |
| 59 | + |
| 60 | + |
| 61 | +class AxisAffineTransform(CoordinateTransform): |
| 62 | + """Axis-independent wrapper of an affine 2D transform with no skew/rotation.""" |
| 63 | + |
| 64 | + affine: Affine |
| 65 | + is_xaxis: bool |
| 66 | + coord_name: Hashable |
| 67 | + dim: str |
| 68 | + size: int |
| 69 | + |
| 70 | + def __init__( |
| 71 | + self, |
| 72 | + affine: Affine, |
| 73 | + size: int, |
| 74 | + dim: str, |
| 75 | + is_xaxis: bool, |
| 76 | + dtype: Any = np.dtype(np.float64), |
| 77 | + ): |
| 78 | + assert (affine.is_rectilinear and (affine.b == affine.d == 0)) |
| 79 | + |
| 80 | + super().__init__((dim), {dim: size}, dtype=dtype) |
| 81 | + self.affine = affine |
| 82 | + self.is_xaxis = is_xaxis |
| 83 | + self.coord_name = dim |
| 84 | + self.dim = dim |
| 85 | + self.size = size |
| 86 | + |
| 87 | + def forward(self, dim_positions: dict[str, Any]) -> dict[Hashable, Any]: |
| 88 | + positions = dim_positions[self.dim] |
| 89 | + |
| 90 | + if self.is_xaxis: |
| 91 | + labels, _ = self.affine * (positions, np.zeros_like(positions)) |
| 92 | + else: |
| 93 | + _, labels = self.affine * (np.zeros_like(positions), positions) |
| 94 | + |
| 95 | + return {self.coord_name: labels} |
| 96 | + |
| 97 | + def reverse(self, coord_labels: dict[Hashable, Any]) -> dict[str, Any]: |
| 98 | + labels = coord_labels[self.coord_name] |
| 99 | + |
| 100 | + if self.is_xaxis: |
| 101 | + positions, _ = ~self.affine * (labels, np.zeros_like(labels)) |
| 102 | + else: |
| 103 | + _, positions = ~self.affine * (np.zeros_like(labels), labels) |
| 104 | + |
| 105 | + return {self.dim: positions} |
| 106 | + |
| 107 | + def equals(self, other): |
| 108 | + if not isinstance(other, AxisAffineTransform): |
| 109 | + return False |
| 110 | + |
| 111 | + # only compare the affine parameters of the relevant axis |
| 112 | + if self.is_xaxis: |
| 113 | + affine_match = self.affine.a == other.affine.a and self.affine.c == other.affine.c |
| 114 | + else: |
| 115 | + affine_match = self.affine.e == other.affine.e and self.affine.f == other.affine.f |
| 116 | + |
| 117 | + return affine_match and self.size == other.size |
| 118 | + |
| 119 | + def generate_coords( |
| 120 | + self, dims: tuple[str, ...] | None = None |
| 121 | + ) -> dict[Hashable, Any]: |
| 122 | + assert dims is None or dims == self.dims |
| 123 | + return self.forward({self.dim: np.arange(self.size)}) |
| 124 | + |
| 125 | + def slice(self, slice: slice) -> "AxisAffineTransform": |
| 126 | + start = max(slice.start or 0, 0) |
| 127 | + stop = min(slice.stop or self.size, self.size) |
| 128 | + step = slice.step or 1 |
| 129 | + |
| 130 | + # TODO: support reverse transform (i.e., start > stop)? |
| 131 | + assert slice.start < slice.stop |
| 132 | + |
| 133 | + size = stop - start // step |
| 134 | + scale = 1. / step |
| 135 | + |
| 136 | + if self.is_xaxis: |
| 137 | + affine = self.affine * Affine.translation(start, 0.) * Affine.scale(scale, 1.) |
| 138 | + else: |
| 139 | + affine = self.affine * Affine.translation(0., start) * Affine.scale(1., scale) |
| 140 | + |
| 141 | + return type(self)(affine, size, self.dim, is_xaxis=self.is_xaxis, dtype=self.dtype) |
| 142 | + |
| 143 | + |
| 144 | +class AxisAffineTransformIndex(CoordinateTransformIndex): |
| 145 | + """Axis-independent Xarray Index for an affine 2D transform with no |
| 146 | + skew/rotation. |
| 147 | +
|
| 148 | + For internal use only. |
| 149 | +
|
| 150 | + This Index class provides specific behavior on top of |
| 151 | + Xarray's `CoordinateTransformIndex`: |
| 152 | +
|
| 153 | + - Data slicing computes a new affine transform and returns a new |
| 154 | + `AxisAffineTransformIndex` object |
| 155 | +
|
| 156 | + - Otherwise data selection creates and returns a new Xarray |
| 157 | + `PandasIndex` object for non-scalar indexers |
| 158 | +
|
| 159 | + """ |
| 160 | + axis_transform: AxisAffineTransform |
| 161 | + dim: str |
| 162 | + |
| 163 | + def __init__(self, transform: AxisAffineTransform): |
| 164 | + assert isinstance(transform, AxisAffineTransform) |
| 165 | + super().__init__(transform) |
| 166 | + self.axis_transform = transform |
| 167 | + self.dim = transform.dim |
| 168 | + |
| 169 | + def isel( # type: ignore[override] |
| 170 | + self, indexers: Mapping[Any, int | slice | np.ndarray | Variable] |
| 171 | + ) -> "AxisAffineTransformIndex | PandasIndex | None": |
| 172 | + idxer = indexers[self.dim] |
| 173 | + |
| 174 | + # generate a new index with updated transform if a slice is given |
| 175 | + if isinstance(idxer, slice): |
| 176 | + return AxisAffineTransformIndex(self.axis_transform.slice(idxer)) |
| 177 | + # no index for scalar value |
| 178 | + elif np.isscalar(idxer): |
| 179 | + return None |
| 180 | + # otherwise return a PandasIndex with values computed by forward transformation |
| 181 | + else: |
| 182 | + values = np.asarray(self.axis_transform.forward({self.dim: idxer})) |
| 183 | + return PandasIndex(values, self.dim, coord_dtype=values.dtype) |
| 184 | + |
| 185 | + def sel(self, labels, method=None, tolerance=None): |
| 186 | + coord_name = self.axis_transform.coord_name |
| 187 | + label = labels[coord_name] |
| 188 | + |
| 189 | + if isinstance(label, slice): |
| 190 | + if label.step is None: |
| 191 | + # continuous interval slice indexing (preserves the index) |
| 192 | + pos = self.transform.reverse({coord_name: np.array([label.start, label.stop])}) |
| 193 | + pos = np.round(pos[self.dim]).astype("int") |
| 194 | + new_start = max(pos[0], 0) |
| 195 | + new_stop = min(pos[1], self.axis_transform.size) |
| 196 | + return IndexSelResult({self.dim: slice(new_start, new_stop)}) |
| 197 | + else: |
| 198 | + # otherwise convert to basic (array) indexing |
| 199 | + label = np.arange(label.start, label.stop, label.step) |
| 200 | + |
| 201 | + # support basic indexing (in the 1D case basic vs. vectorized indexing |
| 202 | + # are pretty much similar) |
| 203 | + unwrap_xr = False |
| 204 | + if not isinstance(label, Variable | DataArray): |
| 205 | + # basic indexing -> either scalar or 1-d array |
| 206 | + try: |
| 207 | + var = Variable("_", label) |
| 208 | + except ValueError: |
| 209 | + var = Variable((), label) |
| 210 | + labels = {self.dim: var} |
| 211 | + unwrap_xr = True |
| 212 | + |
| 213 | + result = super().sel(labels, method=method, tolerance=tolerance) |
| 214 | + |
| 215 | + if unwrap_xr: |
| 216 | + dim_indexers = {self.dim: result.dim_indexers[self.dim].values} |
| 217 | + result = IndexSelResult(dim_indexers) |
| 218 | + |
| 219 | + return result |
| 220 | + |
| 221 | + |
| 222 | +class RectilinearAffineTransformIndex(Index): |
| 223 | + """Xarray index for 2D rectilinear affine transform (no skew/rotation). |
| 224 | +
|
| 225 | + For internal use only. |
| 226 | +
|
| 227 | + """ |
| 228 | + def __init__( |
| 229 | + self, |
| 230 | + x_index: AxisAffineTransformIndex, |
| 231 | + y_index: AxisAffineTransformIndex, |
| 232 | + ): |
| 233 | + self.x_index = x_index |
| 234 | + self.y_index = y_index |
| 235 | + |
| 236 | + def sel( |
| 237 | + self, labels: dict[Any, Any], method=None, tolerance=None |
| 238 | + ) -> IndexSelResult: |
| 239 | + results = [] |
| 240 | + |
| 241 | + for axis_index in (self.x_index, self.y_index): |
| 242 | + coord_name = axis_index.axis_transform.coord_name |
| 243 | + if coord_name in labels: |
| 244 | + results.append(axis_index.sel({coord_name: labels[coord_name]}, method=method, tolerance=tolerance)) |
| 245 | + |
| 246 | + return merge_sel_results(results) |
| 247 | + |
| 248 | + def equals(self, other: "RectilinearAffineTransformIndex") -> bool: |
| 249 | + return self.x_index.equals(other.x_index) and self.y_index.equals(other.y_index) |
| 250 | + |
| 251 | + |
| 252 | +class RasterIndex(Index): |
| 253 | + """Xarray custom index for raster coordinates.""" |
| 254 | + |
| 255 | + _x_index: AxisAffineTransformIndex | PandasIndex | None |
| 256 | + _y_index: AxisAffineTransformIndex | PandasIndex | None |
| 257 | + _xy_index: CoordinateTransformIndex | None |
| 258 | + |
| 259 | + def __init__( |
| 260 | + self, |
| 261 | + x_index: AxisAffineTransformIndex | PandasIndex | None = None, |
| 262 | + y_index: AxisAffineTransformIndex | PandasIndex | None = None, |
| 263 | + xy_index: CoordinateTransformIndex | None = None, |
| 264 | + ): |
| 265 | + # must at least have one index passed |
| 266 | + assert any(idx is not None for idx in (x_index, y_index, xy_index)) |
| 267 | + # either 1D x/y coordinates with x_index/y_index or 2D x/y coordinates with xy_index |
| 268 | + if xy_index is not None: |
| 269 | + assert x_index is None and y_index is None |
| 270 | + |
| 271 | + self._x_index = x_index |
| 272 | + self._y_index = y_index |
| 273 | + self._xy_index = xy_index |
| 274 | + |
| 275 | + def _get_subindexes(self) -> tuple[Index | None, ...]: |
| 276 | + return (self._xy_index, self._x_index, self._y_index) |
| 277 | + |
| 278 | + @classmethod |
| 279 | + def from_transform(cls, affine: Affine, width: int, height: int, x_dim: str = "x", y_dim: str = "y") -> "RasterIndex": |
| 280 | + if affine.is_rectilinear and affine.b == affine.d == 0: |
| 281 | + x_transform = AxisAffineTransform(affine, width, x_dim, is_xaxis=True) |
| 282 | + y_transform = AxisAffineTransform(affine, height, y_dim, is_xaxis=False) |
| 283 | + return cls( |
| 284 | + x_index=AxisAffineTransformIndex(x_transform), |
| 285 | + y_index=AxisAffineTransformIndex(y_transform), |
| 286 | + ) |
| 287 | + else: |
| 288 | + xy_transform = AffineTransform(affine, width, height, x_dim=x_dim, y_dim=y_dim) |
| 289 | + return cls(xy_index=CoordinateTransformIndex(xy_transform)) |
| 290 | + |
| 291 | + @classmethod |
| 292 | + def from_variables( |
| 293 | + cls, |
| 294 | + variables: Mapping[Any, Variable], |
| 295 | + *, |
| 296 | + options: Mapping[str, Any], |
| 297 | + ) -> "RasterIndex": |
| 298 | + # TODO: compute bounds, resolution and affine transform from explicit coordinates. |
| 299 | + raise NotImplementedError( |
| 300 | + "Creating a RasterIndex from existing coordinates is not yet supported." |
| 301 | + ) |
| 302 | + |
| 303 | + def create_variables( |
| 304 | + self, variables: Mapping[Any, Variable] | None = None |
| 305 | + ) -> dict[Hashable, Variable]: |
| 306 | + new_variables: dict[Hashable, Variable] = {} |
| 307 | + |
| 308 | + for index in (self._x_index, self._y_index, self._xy_index): |
| 309 | + if index is not None: |
| 310 | + new_variables.update(index.create_variables()) |
| 311 | + |
| 312 | + return new_variables |
| 313 | + |
| 314 | + def isel( |
| 315 | + self, indexers: Mapping[Any, int | slice | np.ndarray | Variable] |
| 316 | + ) -> "RasterIndex | None": |
| 317 | + indexes: dict[str, Any] = {} |
| 318 | + |
| 319 | + if self._xy_index is not None: |
| 320 | + indexes["xy_index"] = self._xy_index.isel(indexers) |
| 321 | + |
| 322 | + if self._x_index is not None and self._x_index.dim in indexers: |
| 323 | + dim = self._x_index.dim |
| 324 | + indexes["x_index"] = self._x_index.isel(indexers={dim: indexers[dim]}) |
| 325 | + |
| 326 | + if self._y_index is not None and self._y_index.dim in indexers: |
| 327 | + dim = self._y_index.dim |
| 328 | + indexes["x_index"] = self._y_index.isel(indexers={dim: indexers[dim]}) |
| 329 | + |
| 330 | + if any(idx is not None for idx in indexes.values()): |
| 331 | + return RasterIndex(**indexes) |
| 332 | + else: |
| 333 | + return None |
| 334 | + |
| 335 | + def sel( |
| 336 | + self, labels: dict[Any, Any], method=None, tolerance=None |
| 337 | + ) -> IndexSelResult: |
| 338 | + results = [] |
| 339 | + |
| 340 | + if self._xy_index is not None: |
| 341 | + results.append(self._xy_index.sel(labels, method=method, tolerance=tolerance)) |
| 342 | + |
| 343 | + if self._x_index is not None and self._x_index.dim in labels: |
| 344 | + dim = self._x_index.dim |
| 345 | + results.append(self._x_index.sel(labels={dim: labels[dim]}, method=method, tolerance=tolerance)) |
| 346 | + |
| 347 | + if self._y_index is not None and self._y_index.dim in labels: |
| 348 | + dim = self._y_index.dim |
| 349 | + results.append(self._y_index.sel(labels={dim: labels[dim]}, method=method, tolerance=tolerance)) |
| 350 | + |
| 351 | + return merge_sel_results(results) |
| 352 | + |
| 353 | + def equals(self, other: "RasterIndex") -> bool: |
| 354 | + if not isinstance(other, RasterIndex): |
| 355 | + return False |
| 356 | + |
| 357 | + for (idx, oidx) in zip(self._get_subindexes(), other._get_subindexes()): |
| 358 | + if idx is not None and not idx.equals(oidx) |
| 359 | + if self._xy_index is not None and not self._xy_index.equals(other._xy_index): |
| 360 | + return False |
| 361 | + |
| 362 | + return self.x_index.equals(other.x_index) and self.y_index.equals(other.y_index) |
0 commit comments