From 35d0963820b2c8a9503bf2901ff5ab8b90f1bc6e Mon Sep 17 00:00:00 2001 From: Vamshidhar Dantu <36211508+vdantu@users.noreply.github.com> Date: Wed, 19 May 2021 15:52:14 -0700 Subject: [PATCH] Expose all CPUs to TorchServe Handle the error described [in sagemaker docs here](https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model-troubleshoot.html) --- src/sagemaker_pytorch_serving_container/torchserve.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/sagemaker_pytorch_serving_container/torchserve.py b/src/sagemaker_pytorch_serving_container/torchserve.py index d90e0000..76a89bcc 100644 --- a/src/sagemaker_pytorch_serving_container/torchserve.py +++ b/src/sagemaker_pytorch_serving_container/torchserve.py @@ -151,7 +151,7 @@ def _generate_ts_config_properties(): env = environment.Environment() user_defined_configuration = { - "default_response_timeout": env.model_server_timeout, + "vmargs":"-XX:-UseContainerSupport -XX:InitialRAMPercentage=8.0 -XX:MaxRAMPercentage=10.0 -XX:-UseLargePages -XX:+UseG1GC -XX:+ExitOnOutOfMemoryError", "default_response_timeout": env.model_server_timeout, "default_workers_per_model": env.model_server_workers, "inference_address": "http://0.0.0.0:{}".format(env.inference_http_port), "management_address": "http://0.0.0.0:{}".format(env.management_http_port),