@@ -173,10 +173,10 @@ def test_default_configuration(self):
173173 X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'iris' )
174174
175175 auto = SimpleClassificationPipeline (random_state = 1 )
176-
176+
177177 with ignore_warnings (classifier_warnings ):
178- auto = auto .fit (X_train , Y_train )
179-
178+ auto = auto .fit (X_train , Y_train )
179+
180180 predictions = auto .predict (X_test )
181181
182182 acc = sklearn .metrics .accuracy_score (predictions , Y_test )
@@ -200,8 +200,8 @@ def test_default_configuration_multilabel(self):
200200 classifier .set_hyperparameters (default )
201201
202202 with ignore_warnings (classifier_warnings ):
203- classifier = classifier .fit (X_train , Y_train )
204-
203+ classifier = classifier .fit (X_train , Y_train )
204+
205205 predictions = classifier .predict (X_test )
206206
207207 acc = sklearn .metrics .accuracy_score (predictions , Y_test )
@@ -227,10 +227,10 @@ def test_default_configuration_iterative_fit(self):
227227 classifier .fit_transformer (X_train , Y_train )
228228
229229 with ignore_warnings (classifier_warnings ):
230- for i in range (1 , 11 ):
231- classifier .iterative_fit (X_train , Y_train )
232- n_estimators = classifier .steps [- 1 ][- 1 ].choice .estimator .n_estimators
233- self .assertEqual (n_estimators , i )
230+ for i in range (1 , 11 ):
231+ classifier .iterative_fit (X_train , Y_train )
232+ n_estimators = classifier .steps [- 1 ][- 1 ].choice .estimator .n_estimators
233+ self .assertEqual (n_estimators , i )
234234
235235 def test_repr (self ):
236236 """Test that the default pipeline can be converted to its representation and
@@ -856,10 +856,10 @@ def test_predict_proba_batched_sparse(self):
856856 # Multiclass
857857 X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' , make_sparse = True )
858858 X_test_ = X_test .copy ()
859-
859+
860860 with ignore_warnings (classifier_warnings ):
861861 cls .fit (X_train , Y_train )
862-
862+
863863 prediction_ = cls .predict_proba (X_test_ )
864864
865865 # The object behind the last step in the pipeline
@@ -881,10 +881,10 @@ def test_predict_proba_batched_sparse(self):
881881
882882 X_test_ = X_test .copy ()
883883 Y_train = np .array ([[1 if i != y else 0 for i in range (10 )] for y in Y_train ])
884-
884+
885885 with ignore_warnings (classifier_warnings ):
886886 cls .fit (X_train , Y_train )
887-
887+
888888 prediction_ = cls .predict_proba (X_test_ )
889889
890890 # The object behind the last step in the pipeline
0 commit comments