@@ -85,7 +85,7 @@ class TabularFeatureValidator(BaseFeatureValidator):
8585 List for which an element at each index is a
8686 list containing the categories for the respective
8787 categorical column.
88- transformed_columns (List[str])
88+ enc_columns (List[str])
8989 List of columns that were transformed.
9090 column_transformer (Optional[BaseEstimator])
9191 Hosts an imputer and an encoder object if the data
@@ -174,16 +174,16 @@ def _fit(
174174 if not X .select_dtypes (include = 'object' ).empty :
175175 X = self .infer_objects (X )
176176
177- self .transformed_columns , self .feat_type = self ._get_columns_to_encode (X )
177+ self .enc_columns , self .feat_type = self ._get_columns_to_encode (X )
178178
179179 assert self .feat_type is not None
180180
181- if len (self .transformed_columns ) > 0 :
181+ if len (self .enc_columns ) > 0 :
182182
183183 preprocessors = get_tabular_preprocessors ()
184184 self .column_transformer = _create_column_transformer (
185185 preprocessors = preprocessors ,
186- categorical_columns = self .transformed_columns ,
186+ categorical_columns = self .enc_columns ,
187187 )
188188
189189 # Mypy redefinition
@@ -373,7 +373,7 @@ def _check_data(
373373
374374 # Define the column to be encoded here as the feature validator is fitted once
375375 # per estimator
376- self .transformed_columns , self .feat_type = self ._get_columns_to_encode (X )
376+ self .enc_columns , self .feat_type = self ._get_columns_to_encode (X )
377377
378378 column_order = [column for column in X .columns ]
379379 if len (self .column_order ) > 0 :
@@ -411,17 +411,17 @@ def _get_columns_to_encode(
411411 checks) and an encoder fitted in the case the data needs encoding
412412
413413 Returns:
414- transformed_columns (List[str]):
414+ enc_columns (List[str]):
415415 Columns to encode, if any
416416 feat_type:
417417 Type of each column numerical/categorical
418418 """
419419
420- if len (self .transformed_columns ) > 0 and self .feat_type is not None :
421- return self .transformed_columns , self .feat_type
420+ if len (self .enc_columns ) > 0 and self .feat_type is not None :
421+ return self .enc_columns , self .feat_type
422422
423423 # Register if a column needs encoding
424- transformed_columns = []
424+ enc_columns = []
425425
426426 # Also, register the feature types for the estimator
427427 feat_type = []
@@ -430,7 +430,7 @@ def _get_columns_to_encode(
430430 for i , column in enumerate (X .columns ):
431431 if X [column ].dtype .name in ['category' , 'bool' ]:
432432
433- transformed_columns .append (column )
433+ enc_columns .append (column )
434434 feat_type .append ('categorical' )
435435 # Move away from np.issubdtype as it causes
436436 # TypeError: data type not understood in certain pandas types
@@ -472,7 +472,7 @@ def _get_columns_to_encode(
472472 )
473473 else :
474474 feat_type .append ('numerical' )
475- return transformed_columns , feat_type
475+ return enc_columns , feat_type
476476
477477 def list_to_dataframe (
478478 self ,
0 commit comments