@@ -133,7 +133,7 @@ Search for an ensemble of machine learning algorithms
133
133
.. code-block:: none
134
134
135
135
136
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f04ede6f550 >
136
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fed3eaddd90 >
137
137
138
138
139
139
@@ -162,7 +162,7 @@ Print the final ensemble performance
162
162
163
163
.. code-block:: none
164
164
165
- <smac.runhistory.runhistory.RunHistory object at 0x7f04ede6f790 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
165
+ <smac.runhistory.runhistory.RunHistory object at 0x7fed3e8d8a30 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
166
166
data_loader:batch_size, Value: 64
167
167
encoder:__choice__, Value: 'OneHotEncoder'
168
168
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -194,7 +194,7 @@ Print the final ensemble performance
194
194
scaler:__choice__, Value: 'StandardScaler'
195
195
trainer:StandardTrainer:weighted_loss, Value: True
196
196
trainer:__choice__, Value: 'StandardTrainer'
197
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0013458728790283203 , budget=0), TrajEntry(train_perf=0.18128654970760238, incumbent_id=1, incumbent=Configuration:
197
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0014102458953857422 , budget=0), TrajEntry(train_perf=0.18128654970760238, incumbent_id=1, incumbent=Configuration:
198
198
data_loader:batch_size, Value: 64
199
199
encoder:__choice__, Value: 'OneHotEncoder'
200
200
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -226,69 +226,82 @@ Print the final ensemble performance
226
226
scaler:__choice__, Value: 'StandardScaler'
227
227
trainer:StandardTrainer:weighted_loss, Value: True
228
228
trainer:__choice__, Value: 'StandardTrainer'
229
- , ta_runs=1, ta_time_used=2.172813653945923, wallclock_time=3.204160451889038, budget=5.555555555555555), TrajEntry(train_perf=0.14035087719298245, incumbent_id=2, incumbent=Configuration:
230
- data_loader:batch_size, Value: 131
231
- encoder:__choice__, Value: 'NoEncoder'
232
- feature_preprocessor:KernelPCA:coef0, Value: -0.2027355777455664
233
- feature_preprocessor:KernelPCA:degree, Value: 2
234
- feature_preprocessor:KernelPCA:gamma, Value: 0.0029756156161293078
235
- feature_preprocessor:KernelPCA:kernel, Value: 'poly'
236
- feature_preprocessor:KernelPCA:n_components, Value: 4
237
- feature_preprocessor:__choice__, Value: 'KernelPCA'
238
- imputer:categorical_strategy, Value: 'constant_!missing!'
239
- imputer:numerical_strategy, Value: 'mean'
240
- lr_scheduler:CosineAnnealingWarmRestarts:T_0, Value: 20
241
- lr_scheduler:CosineAnnealingWarmRestarts:T_mult, Value: 1.2502829975237466
229
+ , ta_runs=1, ta_time_used=2.9105358123779297, wallclock_time=3.9437384605407715, budget=5.555555555555555), TrajEntry(train_perf=0.13450292397660824, incumbent_id=2, incumbent=Configuration:
230
+ data_loader:batch_size, Value: 149
231
+ encoder:__choice__, Value: 'OneHotEncoder'
232
+ feature_preprocessor:Nystroem:gamma, Value: 0.0011818439394745584
233
+ feature_preprocessor:Nystroem:kernel, Value: 'rbf'
234
+ feature_preprocessor:Nystroem:n_components, Value: 3
235
+ feature_preprocessor:__choice__, Value: 'Nystroem'
236
+ imputer:categorical_strategy, Value: 'most_frequent'
237
+ imputer:numerical_strategy, Value: 'constant_zero'
238
+ lr_scheduler:CosineAnnealingWarmRestarts:T_0, Value: 13
239
+ lr_scheduler:CosineAnnealingWarmRestarts:T_mult, Value: 1.524242262025724
242
240
lr_scheduler:__choice__, Value: 'CosineAnnealingWarmRestarts'
243
- network_backbone:ShapedResNetBackbone:activation, Value: 'sigmoid'
244
- network_backbone:ShapedResNetBackbone:blocks_per_group, Value: 2
245
- network_backbone:ShapedResNetBackbone:max_units, Value: 21
246
- network_backbone:ShapedResNetBackbone:num_groups, Value: 11
247
- network_backbone:ShapedResNetBackbone:output_dim, Value: 128
248
- network_backbone:ShapedResNetBackbone:resnet_shape, Value: 'stairs'
249
- network_backbone:ShapedResNetBackbone:use_dropout, Value: False
250
- network_backbone:ShapedResNetBackbone:use_shake_drop, Value: False
251
- network_backbone:ShapedResNetBackbone:use_shake_shake, Value: False
252
- network_backbone:__choice__, Value: 'ShapedResNetBackbone'
241
+ network_backbone:ResNetBackbone:activation, Value: 'tanh'
242
+ network_backbone:ResNetBackbone:blocks_per_group_0, Value: 1
243
+ network_backbone:ResNetBackbone:blocks_per_group_1, Value: 1
244
+ network_backbone:ResNetBackbone:blocks_per_group_2, Value: 4
245
+ network_backbone:ResNetBackbone:blocks_per_group_3, Value: 2
246
+ network_backbone:ResNetBackbone:blocks_per_group_4, Value: 2
247
+ network_backbone:ResNetBackbone:blocks_per_group_5, Value: 2
248
+ network_backbone:ResNetBackbone:dropout_0, Value: 0.26612716792811836
249
+ network_backbone:ResNetBackbone:dropout_1, Value: 0.4042968315566448
250
+ network_backbone:ResNetBackbone:dropout_2, Value: 0.10216930761786128
251
+ network_backbone:ResNetBackbone:dropout_3, Value: 0.6859286849839384
252
+ network_backbone:ResNetBackbone:dropout_4, Value: 0.56482307358881
253
+ network_backbone:ResNetBackbone:dropout_5, Value: 0.03114494377280881
254
+ network_backbone:ResNetBackbone:max_shake_drop_probability, Value: 0.06411335288267506
255
+ network_backbone:ResNetBackbone:num_groups, Value: 5
256
+ network_backbone:ResNetBackbone:num_units_0, Value: 142
257
+ network_backbone:ResNetBackbone:num_units_1, Value: 425
258
+ network_backbone:ResNetBackbone:num_units_2, Value: 826
259
+ network_backbone:ResNetBackbone:num_units_3, Value: 27
260
+ network_backbone:ResNetBackbone:num_units_4, Value: 309
261
+ network_backbone:ResNetBackbone:num_units_5, Value: 345
262
+ network_backbone:ResNetBackbone:use_dropout, Value: True
263
+ network_backbone:ResNetBackbone:use_shake_drop, Value: True
264
+ network_backbone:ResNetBackbone:use_shake_shake, Value: False
265
+ network_backbone:__choice__, Value: 'ResNetBackbone'
253
266
network_embedding:__choice__, Value: 'NoEmbedding'
254
267
network_head:__choice__, Value: 'fully_connected'
255
- network_head:fully_connected:activation, Value: 'tanh'
256
- network_head:fully_connected:num_layers, Value: 4
257
- network_head:fully_connected:units_layer_1, Value: 415
258
- network_head:fully_connected:units_layer_2, Value: 290
259
- network_head:fully_connected:units_layer_3, Value: 313
260
- network_init:KaimingInit:bias_strategy, Value: 'Normal'
261
- network_init:__choice__, Value: 'KaimingInit'
262
- optimizer:AdamOptimizer:beta1, Value: 0.9981587455677909
263
- optimizer:AdamOptimizer:beta2, Value: 0.9934737249657393
264
- optimizer:AdamOptimizer:lr, Value: 0.0015351906927605823
265
- optimizer:AdamOptimizer:weight_decay, Value: 0.06126849297256112
266
- optimizer:__choice__, Value: 'AdamOptimizer'
267
- scaler:__choice__, Value: 'MinMaxScaler'
268
- trainer:StandardTrainer:weighted_loss, Value: False
268
+ network_head:fully_connected:activation, Value: 'sigmoid'
269
+ network_head:fully_connected:num_layers, Value: 2
270
+ network_head:fully_connected:units_layer_1, Value: 356
271
+ network_init:OrthogonalInit:bias_strategy, Value: 'Normal'
272
+ network_init:__choice__, Value: 'OrthogonalInit'
273
+ optimizer:AdamWOptimizer:beta1, Value: 0.9376381409135858
274
+ optimizer:AdamWOptimizer:beta2, Value: 0.9559640621179888
275
+ optimizer:AdamWOptimizer:lr, Value: 3.153418844144074e-05
276
+ optimizer:AdamWOptimizer:weight_decay, Value: 0.04398417011111847
277
+ optimizer:__choice__, Value: 'AdamWOptimizer'
278
+ scaler:__choice__, Value: 'StandardScaler'
279
+ trainer:StandardTrainer:weighted_loss, Value: True
269
280
trainer:__choice__, Value: 'StandardTrainer'
270
- , ta_runs=20, ta_time_used=119.23157835006714, wallclock_time=186.0883228778839, budget=50.0)]
271
- {'accuracy': 0.861271676300578}
272
- | | Preprocessing | Estimator | Weight |
273
- |---:|:------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
274
- | 0 | None | RFLearner | 0.2 |
275
- | 1 | SimpleImputer,NoEncoder,MinMaxScaler,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
276
- | 2 | SimpleImputer,NoEncoder,Normalizer,NoFeaturePreprocessing | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
277
- | 3 | None | CBLearner | 0.12 |
278
- | 4 | None | SVMLearner | 0.1 |
279
- | 5 | None | KNNLearner | 0.1 |
280
- | 6 | SimpleImputer,NoEncoder,Normalizer,NoFeaturePreprocessing | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
281
- | 7 | None | ETLearner | 0.06 |
282
- | 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
283
- | 9 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
281
+ , ta_runs=20, ta_time_used=165.19103455543518, wallclock_time=239.00682401657104, budget=50.0)]
282
+ {'accuracy': 0.8497109826589595}
283
+ | | Preprocessing | Estimator | Weight |
284
+ |---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
285
+ | 0 | SimpleImputer,OneHotEncoder,MinMaxScaler,KitchenSink | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.26 |
286
+ | 1 | SimpleImputer,NoEncoder,StandardScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.18 |
287
+ | 2 | SimpleImputer,OneHotEncoder,MinMaxScaler,KitchenSink | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
288
+ | 3 | SimpleImputer,NoEncoder,StandardScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
289
+ | 4 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
290
+ | 5 | None | KNNLearner | 0.06 |
291
+ | 6 | None | CBLearner | 0.04 |
292
+ | 7 | None | SVMLearner | 0.04 |
293
+ | 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
294
+ | 9 | None | RFLearner | 0.02 |
295
+ | 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
296
+ | 11 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
284
297
285
298
286
299
287
300
288
301
289
302
.. rst-class:: sphx-glr-timing
290
303
291
- **Total running time of the script:** ( 5 minutes 30.259 seconds)
304
+ **Total running time of the script:** ( 5 minutes 25.335 seconds)
292
305
293
306
294
307
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:
0 commit comments