Skip to content

warning: failed to mlock NNN-byte buffer (after previously locking MMM bytes) #708

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
jamesbraza opened this issue Sep 13, 2023 · 3 comments

Comments

@jamesbraza
Copy link
Contributor

Disclaimer: this is sort of a duplicate, but all the previously made issues' resolutions (#254, #171) aren't working, and the versions are now old.

Current Behavior

I am getting a warning when booting up TheBloke/Llama-2-13B-chat-GGUF/llama-2-13b-chat.Q4_K_S.gguf with llama-cpp-python==0.2.2, freshly after rebooting the VM:

warning: failed to mlock 39813120-byte buffer (after previously locking 4106670080 bytes): Cannot allocate memory
Try increasing RLIMIT_MLOCK ('ulimit -l' as root).

I am unable to run ulimit -l unlimited as suggested here:

> ulimit -l unlimited
-bash: ulimit: max locked memory: cannot modify limit: Operation not permitted

Prefixing my command with USE_MLOCK=0 as suggested here didn't work either.

Below is my full command with its printouts:

Full output
> python h2ogpt/generate.py --base_model=llama --prompt_type=llama2 --model_path_llama=models/llama-2-13b-chat.Q4_K_S.gguf
Using Model llama
Starting get_model: llama
/home/ubuntu/code/project/venv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:1006: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.
  warnings.warn(
Could not determine --max_seq_len, setting to 2048.  Pass if not correct
llama_model_loader: loaded meta data with 19 key-value pairs and 363 tensors from models/llama-2-13b-chat.Q4_K_S.gguf (version GGUF V2 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q4_K     [  5120, 32000,     1,     1 ]
llama_model_loader: - tensor    1:           blk.0.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor    2:            blk.0.ffn_down.weight q5_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor    3:            blk.0.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor    4:              blk.0.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    7:         blk.0.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    8:              blk.0.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    9:              blk.0.attn_v.weight q5_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   10:           blk.1.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   11:            blk.1.ffn_down.weight q5_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   12:            blk.1.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   13:              blk.1.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   16:         blk.1.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   17:              blk.1.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   18:              blk.1.attn_v.weight q5_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   19:          blk.10.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   20:           blk.10.ffn_down.weight q5_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   21:           blk.10.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   22:             blk.10.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   23:           blk.10.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   24:             blk.10.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   25:        blk.10.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   26:             blk.10.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   27:             blk.10.attn_v.weight q5_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   28:          blk.11.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   29:           blk.11.ffn_down.weight q5_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   30:           blk.11.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   31:             blk.11.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   32:           blk.11.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   33:             blk.11.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   34:        blk.11.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   35:             blk.11.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   36:             blk.11.attn_v.weight q5_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   37:          blk.12.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   38:           blk.12.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   39:           blk.12.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   40:             blk.12.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   41:           blk.12.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   42:             blk.12.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   43:        blk.12.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   44:             blk.12.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   45:             blk.12.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   46:          blk.13.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   47:           blk.13.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   48:           blk.13.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   49:             blk.13.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   50:           blk.13.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   51:             blk.13.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   52:        blk.13.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   53:             blk.13.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   54:             blk.13.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   55:          blk.14.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   56:           blk.14.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   57:           blk.14.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   58:             blk.14.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   59:           blk.14.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   60:             blk.14.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   61:        blk.14.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   62:             blk.14.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   63:             blk.14.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   64:             blk.15.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   65:             blk.15.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   66:           blk.2.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   67:            blk.2.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   68:            blk.2.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   69:              blk.2.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   70:            blk.2.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   71:              blk.2.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   72:         blk.2.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   73:              blk.2.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   74:              blk.2.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   75:           blk.3.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   76:            blk.3.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   77:            blk.3.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   78:              blk.3.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   79:            blk.3.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   80:              blk.3.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   81:         blk.3.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   82:              blk.3.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   83:              blk.3.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   84:           blk.4.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   85:            blk.4.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   86:            blk.4.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   87:              blk.4.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   88:            blk.4.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   89:              blk.4.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   90:         blk.4.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   91:              blk.4.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   92:              blk.4.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   93:           blk.5.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   94:            blk.5.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   95:            blk.5.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   96:              blk.5.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   97:            blk.5.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   98:              blk.5.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   99:         blk.5.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  100:              blk.5.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  101:              blk.5.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  102:           blk.6.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  103:            blk.6.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  104:            blk.6.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  105:              blk.6.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  106:            blk.6.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  107:              blk.6.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  108:         blk.6.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  109:              blk.6.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  110:              blk.6.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  111:           blk.7.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  112:            blk.7.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  113:            blk.7.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  114:              blk.7.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  115:            blk.7.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  116:              blk.7.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  117:         blk.7.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  118:              blk.7.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  119:              blk.7.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  120:           blk.8.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  121:            blk.8.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  122:            blk.8.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  123:              blk.8.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  124:            blk.8.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  125:              blk.8.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  126:         blk.8.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  127:              blk.8.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  128:              blk.8.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  129:           blk.9.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  130:            blk.9.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  131:            blk.9.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  132:              blk.9.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  133:            blk.9.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  134:              blk.9.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  135:         blk.9.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  136:              blk.9.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  137:              blk.9.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  138:          blk.15.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  139:           blk.15.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  141:             blk.15.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  142:           blk.15.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  143:        blk.15.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  144:             blk.15.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  145:          blk.16.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  146:           blk.16.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  147:           blk.16.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  148:             blk.16.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  149:           blk.16.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  150:             blk.16.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  151:        blk.16.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  152:             blk.16.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  153:             blk.16.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  154:          blk.17.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  155:           blk.17.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  156:           blk.17.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  157:             blk.17.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  158:           blk.17.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  159:             blk.17.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  160:        blk.17.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  161:             blk.17.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  162:             blk.17.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  163:          blk.18.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  164:           blk.18.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  165:           blk.18.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  166:             blk.18.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  167:           blk.18.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  168:             blk.18.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  169:        blk.18.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  170:             blk.18.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  171:             blk.18.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  172:          blk.19.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  173:           blk.19.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  174:           blk.19.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  175:             blk.19.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  176:           blk.19.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  177:             blk.19.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  178:        blk.19.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  179:             blk.19.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  180:             blk.19.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  181:          blk.20.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  182:           blk.20.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  183:           blk.20.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  184:             blk.20.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  185:           blk.20.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  186:             blk.20.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  187:        blk.20.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  188:             blk.20.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  189:             blk.20.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  190:          blk.21.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  191:           blk.21.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  192:           blk.21.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  193:             blk.21.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  194:           blk.21.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  195:             blk.21.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  196:        blk.21.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  197:             blk.21.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  198:             blk.21.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  199:          blk.22.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  200:           blk.22.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  201:           blk.22.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  202:             blk.22.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  203:           blk.22.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  204:             blk.22.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  205:        blk.22.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  206:             blk.22.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  207:             blk.22.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  208:          blk.23.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  209:           blk.23.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  210:           blk.23.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  211:             blk.23.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  212:           blk.23.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  213:             blk.23.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  214:        blk.23.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  215:             blk.23.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  216:             blk.23.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  217:          blk.24.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  218:           blk.24.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  219:           blk.24.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  220:             blk.24.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  221:           blk.24.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  222:             blk.24.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  223:        blk.24.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  224:             blk.24.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  225:             blk.24.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  226:          blk.25.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  227:           blk.25.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  228:           blk.25.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  229:             blk.25.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  230:           blk.25.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  231:             blk.25.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  232:        blk.25.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  233:             blk.25.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  234:             blk.25.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  235:          blk.26.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  236:           blk.26.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  237:           blk.26.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  238:             blk.26.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  239:           blk.26.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  240:             blk.26.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  241:        blk.26.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  242:             blk.26.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  243:             blk.26.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  244:          blk.27.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  245:           blk.27.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  246:           blk.27.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  247:             blk.27.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  248:           blk.27.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  249:             blk.27.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  250:        blk.27.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  251:             blk.27.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  252:             blk.27.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  253:          blk.28.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  254:           blk.28.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  255:           blk.28.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  256:             blk.28.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  257:           blk.28.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  258:             blk.28.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  259:        blk.28.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  260:             blk.28.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  261:             blk.28.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  262:          blk.29.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  263:           blk.29.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  264:           blk.29.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  265:             blk.29.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  266:           blk.29.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  267:             blk.29.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  268:        blk.29.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  269:             blk.29.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  270:             blk.29.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  271:           blk.30.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  272:             blk.30.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  274:        blk.30.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  275:             blk.30.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  276:             blk.30.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  277:                    output.weight q6_K     [  5120, 32000,     1,     1 ]
llama_model_loader: - tensor  278:          blk.30.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  279:           blk.30.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  280:           blk.30.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  281:          blk.31.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  282:           blk.31.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  283:           blk.31.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  284:             blk.31.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  285:           blk.31.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  286:             blk.31.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  287:        blk.31.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  288:             blk.31.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  289:             blk.31.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  290:          blk.32.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  291:           blk.32.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  292:           blk.32.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  293:             blk.32.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  294:           blk.32.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  295:             blk.32.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  296:        blk.32.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  297:             blk.32.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  298:             blk.32.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  299:          blk.33.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  300:           blk.33.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  301:           blk.33.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  302:             blk.33.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  303:           blk.33.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  304:             blk.33.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  305:        blk.33.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  306:             blk.33.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  307:             blk.33.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  308:          blk.34.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  309:           blk.34.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  310:           blk.34.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  311:             blk.34.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  312:           blk.34.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  313:             blk.34.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  314:        blk.34.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  315:             blk.34.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  316:             blk.34.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  317:          blk.35.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  318:           blk.35.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  319:           blk.35.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  320:             blk.35.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  321:           blk.35.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  322:             blk.35.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  323:        blk.35.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  324:             blk.35.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  325:             blk.35.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  326:          blk.36.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  327:           blk.36.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  328:           blk.36.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  329:             blk.36.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  330:           blk.36.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  331:             blk.36.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  332:        blk.36.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  333:             blk.36.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  334:             blk.36.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  335:          blk.37.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  336:           blk.37.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  337:           blk.37.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  338:             blk.37.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  339:           blk.37.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  340:             blk.37.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  341:        blk.37.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  342:             blk.37.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  343:             blk.37.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  344:          blk.38.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  345:           blk.38.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  346:           blk.38.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  347:             blk.38.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  348:           blk.38.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  349:             blk.38.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  350:        blk.38.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  351:             blk.38.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  352:             blk.38.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  353:          blk.39.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  354:           blk.39.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  355:           blk.39.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  356:             blk.39.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  357:           blk.39.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  358:             blk.39.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  359:        blk.39.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  360:             blk.39.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  361:             blk.39.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  362:               output_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str
llama_model_loader: - kv   1:                               general.name str
llama_model_loader: - kv   2:                       llama.context_length u32
llama_model_loader: - kv   3:                     llama.embedding_length u32
llama_model_loader: - kv   4:                          llama.block_count u32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32
llama_model_loader: - kv   7:                 llama.attention.head_count u32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv  10:                          general.file_type u32
llama_model_loader: - kv  11:                       tokenizer.ggml.model str
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv  17:            tokenizer.ggml.unknown_token_id u32
llama_model_loader: - kv  18:               general.quantization_version u32
llama_model_loader: - type  f32:   81 tensors                                                                                                                                                                [0/395]
llama_model_loader: - type q4_K:  273 tensors
llama_model_loader: - type q5_K:    8 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_print_meta: format         = GGUF V2 (latest)
llm_load_print_meta: arch           = llama
llm_load_print_meta: vocab type     = SPM
llm_load_print_meta: n_vocab        = 32000
llm_load_print_meta: n_merges       = 0
llm_load_print_meta: n_ctx_train    = 4096
llm_load_print_meta: n_ctx          = 2048
llm_load_print_meta: n_embd         = 5120
llm_load_print_meta: n_head         = 40
llm_load_print_meta: n_head_kv      = 40
llm_load_print_meta: n_layer        = 40
llm_load_print_meta: n_rot          = 128
llm_load_print_meta: n_gqa          = 1
llm_load_print_meta: f_norm_eps     = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff           = 13824
llm_load_print_meta: freq_base      = 10000.0
llm_load_print_meta: freq_scale     = 1
llm_load_print_meta: model type     = 13B
llm_load_print_meta: model ftype    = mostly Q4_K - Small
llm_load_print_meta: model size     = 13.02 B
llm_load_print_meta: general.name   = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.12 MB
llm_load_tensors: mem required  = 7070.26 MB (+ 1600.00 MB per state)
.......................................................warning: failed to mlock 39813120-byte buffer (after previously locking 4106670080 bytes): Cannot allocate memory
Try increasing RLIMIT_MLOCK ('ulimit -l' as root).
............................................
llama_new_context_with_model: kv self size  = 1600.00 MB
llama_new_context_with_model: compute buffer total size =  191.47 MB
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
Model {'base_model': 'llama', 'tokenizer_base_model': '', 'lora_weights': '', 'inference_server': '', 'prompt_type': 'llama2', 'prompt_dict': {'promptA': '', 'promptB': '', 'PreInstruct': '<s>[INST] ', 'PreInput'
: None, 'PreResponse': '[/INST]', 'terminate_response': ['[INST]', '</s>'], 'chat_sep': ' ', 'chat_turn_sep': ' </s>', 'humanstr': '[INST]', 'botstr': '[/INST]', 'generates_leading_space': False, 'system_prompt':
 None}, 'load_8bit': False, 'load_4bit': False, 'low_bit_mode': 1, 'load_half': True, 'load_gptq': '', 'load_exllama': False, 'use_safetensors': False, 'revision': None, 'use_gpu_id': True, 'gpu_id': 0, 'compile_
model': True, 'use_cache': None, 'llamacpp_dict': {'n_gpu_layers': 100, 'use_mlock': True, 'n_batch': 1024, 'n_gqa': 0, 'model_path_llama': 'models/llama-2-13b-chat.Q4_K_S.gguf', 'model_name_gptj': 'ggml-gpt4all-
j-v1.3-groovy.bin', 'model_name_gpt4all_llama': 'ggml-wizardLM-7B.q4_2.bin', 'model_name_exllama_if_no_config': 'TheBloke/Nous-Hermes-Llama2-GPTQ'}, 'model_path_llama': 'models/llama-2-13b-chat.Q4_K_S.gguf', 'mod
el_name_gptj': 'ggml-gpt4all-j-v1.3-groovy.bin', 'model_name_gpt4all_llama': 'ggml-wizardLM-7B.q4_2.bin', 'model_name_exllama_if_no_config': 'TheBloke/Nous-Hermes-Llama2-GPTQ'}
load INSTRUCTOR_Transformer
max_seq_length  512
favicon_path1=h2o-logo.svg not found
favicon_path2: h2o-logo.svg not found in /home/ubuntu/code/project/h2ogpt/src
Running on local URL:  http://0.0.0.0:7860

Environment and Context

Versions
> lspcu
Architecture:            x86_64
  CPU op-mode(s):        32-bit, 64-bit
  Address sizes:         46 bits physical, 48 bits virtual
  Byte Order:            Little Endian
CPU(s):                  8
  On-line CPU(s) list:   0-7
Vendor ID:               GenuineIntel
  Model name:            Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
    CPU family:          6
    Model:               85
    Thread(s) per core:  2
    Core(s) per socket:  4
    Socket(s):           1
    Stepping:            7
    BogoMIPS:            4999.98
    Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid
                          aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_si
                         ngle pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku o
                         spke avx512_vnni
Virtualization features:
  Hypervisor vendor:     KVM
  Virtualization type:   full
Caches (sum of all):
  L1d:                   128 KiB (4 instances)
  L1i:                   128 KiB (4 instances)
  L2:                    4 MiB (4 instances)
  L3:                    35.8 MiB (1 instance)
NUMA:
  NUMA node(s):          1
  NUMA node0 CPU(s):     0-7
Vulnerabilities:
  Gather data sampling:  Unknown: Dependent on hypervisor status
  Itlb multihit:         KVM: Mitigation: VMX unsupported
  L1tf:                  Mitigation; PTE Inversion
  Mds:                   Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
  Meltdown:              Mitigation; PTI
  Mmio stale data:       Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
  Retbleed:              Vulnerable
  Spec store bypass:     Vulnerable
  Spectre v1:            Mitigation; usercopy/swapgs barriers and __user pointer sanitization
  Spectre v2:            Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
  Srbds:                 Not affected
  Tsx async abort:       Not affected

Other versions:

> uname -a
Linux ip-10-16-195-199 6.2.0-1011-aws #11~22.04.1-Ubuntu SMP Mon Aug 21 16:27:59 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux
> python3 --version
Python 3.11.5
> make --version
GNU Make 4.3
Built for x86_64-pc-linux-gnu
Copyright (C) 1988-2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
> g++ --version
g++ (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

pip list (subset):

llama-cpp-python==0.2.2
torch==2.0.1

And h2ogpt==f2d71b3ec553c9da6b4753c6d873c8cb7b70be86 as a git submodule, installing -r h2ogpt/requirements.txt -r h2ogpt/reqs_optional/requirements_optional_langchain.txt.

@jamesbraza
Copy link
Contributor Author

Update: turns out USE_MLOCK=0 isn't used by h2ogpt. You have to pass it as an argument to generate.py: python generate.py --llamacpp_dict="{use_mlock:False}".

Using this argument removes the mlock warning. Feel free to close this out if there's nothing to do here, it's just user error.

@carlosatFroom
Copy link

Thanks James. In addition to your comment, I would add that when using llama_cpp.server, just set export use_mlock=False before running python -m llama_cpp.server

@abetlen
Copy link
Owner

abetlen commented Sep 14, 2023

@jamesbraza glad you were able to resolve this!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants