|
| 1 | +""" |
| 2 | +This example demonstrates how to create an e-commerce chatbot that: |
| 3 | +1. Understands customer queries about products |
| 4 | +2. Provides helpful responses with product recommendations |
| 5 | +3. Maintains context through conversation |
| 6 | +4. Returns structured product recommendations |
| 7 | +""" |
| 8 | + |
| 9 | +import asyncio |
| 10 | +from enum import Enum |
| 11 | +from typing import List, Optional |
| 12 | + |
| 13 | +from pydantic import BaseModel, Field |
| 14 | + |
| 15 | +import workflowai |
| 16 | +from workflowai import Model, Run |
| 17 | + |
| 18 | + |
| 19 | +class Role(str, Enum): |
| 20 | + """Enum representing possible message roles.""" |
| 21 | + USER = "user" |
| 22 | + ASSISTANT = "assistant" |
| 23 | + |
| 24 | + |
| 25 | +class Product(BaseModel): |
| 26 | + """Model representing a product recommendation.""" |
| 27 | + name: str = Field( |
| 28 | + description="Name of the product", |
| 29 | + examples=["Wireless Noise-Cancelling Headphones", "4K Smart TV"], |
| 30 | + ) |
| 31 | + price: float = Field( |
| 32 | + description="Price of the product in USD", |
| 33 | + examples=[299.99, 799.99], |
| 34 | + ge=0, |
| 35 | + ) |
| 36 | + description: str = Field( |
| 37 | + description="Brief description of the product", |
| 38 | + examples=[ |
| 39 | + "Premium wireless headphones with active noise cancellation", |
| 40 | + "65-inch 4K Smart TV with HDR support", |
| 41 | + ], |
| 42 | + ) |
| 43 | + rating: Optional[float] = Field( |
| 44 | + default=None, |
| 45 | + description="Customer rating out of 5 stars", |
| 46 | + examples=[4.5, 4.8], |
| 47 | + ge=0, |
| 48 | + le=5, |
| 49 | + ) |
| 50 | + url: Optional[str] = Field( |
| 51 | + default=None, |
| 52 | + description="URL to view the product details", |
| 53 | + examples=["https://example.com/products/wireless-headphones"], |
| 54 | + ) |
| 55 | + |
| 56 | + |
| 57 | +class Message(BaseModel): |
| 58 | + """Model representing a chat message.""" |
| 59 | + role: Role = Field() |
| 60 | + content: str = Field( |
| 61 | + description="The content of the message", |
| 62 | + examples=[ |
| 63 | + "I'm looking for noise-cancelling headphones for travel", |
| 64 | + "Based on your requirements, here are some great headphone options...", |
| 65 | + ], |
| 66 | + ) |
| 67 | + recommended_products: Optional[List[Product]] = Field( |
| 68 | + default=None, |
| 69 | + description="Product recommendations included with this message, if any", |
| 70 | + ) |
| 71 | + |
| 72 | + |
| 73 | +class AssistantMessage(Message): |
| 74 | + """Model representing a message from the assistant.""" |
| 75 | + role: Role = Role.ASSISTANT |
| 76 | + content: str = "" |
| 77 | + |
| 78 | + |
| 79 | +class ChatbotOutput(BaseModel): |
| 80 | + """Output model for the chatbot response.""" |
| 81 | + assistant_message: AssistantMessage = Field( |
| 82 | + description="The chatbot's response message", |
| 83 | + ) |
| 84 | + |
| 85 | + |
| 86 | +class ChatInput(BaseModel): |
| 87 | + """Input model containing the user's message and conversation history.""" |
| 88 | + conversation_history: Optional[List[Message]] = Field( |
| 89 | + default=None, |
| 90 | + description="Previous messages in the conversation, if any", |
| 91 | + ) |
| 92 | + user_message: str = Field( |
| 93 | + description="The current message from the user", |
| 94 | + ) |
| 95 | + |
| 96 | + |
| 97 | +@workflowai.agent( |
| 98 | + id="ecommerce-chatbot", |
| 99 | + model=Model.LLAMA_3_3_70B, |
| 100 | +) |
| 101 | +async def get_product_recommendations(chat_input: ChatInput) -> Run[ChatbotOutput]: |
| 102 | + """ |
| 103 | + Act as a knowledgeable e-commerce shopping assistant. |
| 104 | +
|
| 105 | + Guidelines: |
| 106 | + 1. Understand customer needs and preferences: |
| 107 | + - Analyze the query for specific requirements (price range, features, etc.) |
| 108 | + - Consider any context from conversation history |
| 109 | + - Ask clarifying questions if needed |
| 110 | +
|
| 111 | + 2. Provide helpful recommendations: |
| 112 | + - Suggest 3-5 relevant products that match the criteria |
| 113 | + - Include a mix of price points when appropriate |
| 114 | + - Explain why each product is recommended |
| 115 | +
|
| 116 | + 3. Maintain a friendly, professional tone: |
| 117 | + - Be conversational but informative |
| 118 | + - Highlight key features and benefits |
| 119 | + - Acknowledge specific customer needs |
| 120 | +
|
| 121 | + 4. Product information should be realistic: |
| 122 | + - Use reasonable prices for the product category |
| 123 | + - Include accurate descriptions and features |
| 124 | + - Provide realistic ratings based on typical products |
| 125 | +
|
| 126 | + 5. Format the response clearly: |
| 127 | + - Start with a helpful message addressing the query |
| 128 | + - Follow with relevant product recommendations |
| 129 | + - Make it easy to understand the options |
| 130 | + """ |
| 131 | + ... |
| 132 | + |
| 133 | + |
| 134 | +async def main(): |
| 135 | + # Example 1: Initial query about headphones |
| 136 | + print("\nExample 1: Looking for headphones") |
| 137 | + print("-" * 50) |
| 138 | + |
| 139 | + chat_input = ChatInput( |
| 140 | + user_message="I'm looking for noise-cancelling headphones for travel. My budget is around $300.", |
| 141 | + ) |
| 142 | + |
| 143 | + run = await get_product_recommendations(chat_input) |
| 144 | + print(run) |
| 145 | + |
| 146 | + # Example 2: Follow-up question with conversation history |
| 147 | + print("\nExample 2: Follow-up about battery life") |
| 148 | + print("-" * 50) |
| 149 | + |
| 150 | + chat_input = ChatInput( |
| 151 | + user_message="Which one has the best battery life?", |
| 152 | + conversation_history=[ |
| 153 | + Message( |
| 154 | + role=Role.USER, |
| 155 | + content="I'm looking for noise-cancelling headphones for travel. My budget is around $300.", |
| 156 | + ), |
| 157 | + run.output.assistant_message, |
| 158 | + ], |
| 159 | + ) |
| 160 | + |
| 161 | + run = await get_product_recommendations(chat_input) |
| 162 | + print(run) |
| 163 | + |
| 164 | + # Example 3: Specific question about a previously recommended product |
| 165 | + print("\nExample 3: Question about a specific product") |
| 166 | + print("-" * 50) |
| 167 | + |
| 168 | + chat_input = ChatInput( |
| 169 | + user_message="Tell me more about the noise cancellation features of the first headphone you recommended.", |
| 170 | + conversation_history=[ |
| 171 | + Message( |
| 172 | + role=Role.USER, |
| 173 | + content="I'm looking for noise-cancelling headphones for travel. My budget is around $300.", |
| 174 | + ), |
| 175 | + run.output.assistant_message, |
| 176 | + Message( |
| 177 | + role=Role.USER, |
| 178 | + content="Which one has the best battery life?", |
| 179 | + ), |
| 180 | + run.output.assistant_message, |
| 181 | + ], |
| 182 | + ) |
| 183 | + |
| 184 | + run = await get_product_recommendations(chat_input) |
| 185 | + print(run) |
| 186 | + |
| 187 | + # Example 4: Different product category |
| 188 | + print("\nExample 4: Looking for a TV") |
| 189 | + print("-" * 50) |
| 190 | + |
| 191 | + chat_input = ChatInput( |
| 192 | + user_message="I need a good TV for gaming. My budget is $1000.", |
| 193 | + ) |
| 194 | + |
| 195 | + run = await get_product_recommendations(chat_input) |
| 196 | + print(run) |
| 197 | + |
| 198 | + |
| 199 | +if __name__ == "__main__": |
| 200 | + asyncio.run(main()) |
0 commit comments