diff --git a/project_euler/problem_41/sol1.py b/project_euler/problem_41/sol1.py index b4c0d842ae25..80ef2125b82a 100644 --- a/project_euler/problem_41/sol1.py +++ b/project_euler/problem_41/sol1.py @@ -1,19 +1,19 @@ -from __future__ import annotations - -from itertools import permutations -from math import sqrt - """ +Pandigital prime +Problem 41: https://projecteuler.net/problem=41 + We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? -""" -""" All pandigital numbers except for 1, 4 ,7 pandigital numbers are divisible by 3. -So we will check only 7 digit panddigital numbers to obtain the largest possible +So we will check only 7 digit pandigital numbers to obtain the largest possible pandigital prime. """ +from __future__ import annotations + +from itertools import permutations +from math import sqrt def is_prime(n: int) -> bool: @@ -35,20 +35,22 @@ def is_prime(n: int) -> bool: return True -def compute_pandigital_primes(n: int) -> list[int]: +def solution(n: int = 7) -> int: """ - Returns a list of all n-digit pandigital primes. - >>> compute_pandigital_primes(2) - [] - >>> max(compute_pandigital_primes(4)) + Returns the maximum pandigital prime number of length n. + If there are none, then it will return 0. + >>> solution(2) + 0 + >>> solution(4) 4231 - >>> max(compute_pandigital_primes(7)) + >>> solution(7) 7652413 """ pandigital_str = "".join(str(i) for i in range(1, n + 1)) perm_list = [int("".join(i)) for i in permutations(pandigital_str, n)] - return [num for num in perm_list if is_prime(num)] + pandigitals = [num for num in perm_list if is_prime(num)] + return max(pandigitals) if pandigitals else 0 if __name__ == "__main__": - print(f"{max(compute_pandigital_primes(7)) = }") + print(f"{solution() = }")