|
| 1 | +using Microsoft.Extensions.Logging; |
| 2 | +using Microsoft.ML.OnnxRuntime.Tensors; |
| 3 | +using OnnxStack.Core; |
| 4 | +using OnnxStack.Core.Config; |
| 5 | +using OnnxStack.Core.Image; |
| 6 | +using OnnxStack.Core.Model; |
| 7 | +using OnnxStack.Core.Services; |
| 8 | +using OnnxStack.FeatureExtractor.Common; |
| 9 | +using System.Linq; |
| 10 | +using System.Threading.Tasks; |
| 11 | + |
| 12 | +namespace OnnxStack.FeatureExtractor.Services |
| 13 | +{ |
| 14 | + /// <summary> |
| 15 | + /// Service for handing images for input and output of the diffusion process |
| 16 | + /// </summary> |
| 17 | + /// <seealso cref="OnnxStack.StableDiffusion.Common.IFeatureExtractor" /> |
| 18 | + public class FeatureExtractorService : IFeatureExtractorService |
| 19 | + { |
| 20 | + private readonly ILogger<FeatureExtractorService> _logger; |
| 21 | + private readonly IOnnxModelService _onnxModelService; |
| 22 | + |
| 23 | + |
| 24 | + /// <summary> |
| 25 | + /// Initializes a new instance of the <see cref="FeatureExtractorService"/> class. |
| 26 | + /// </summary> |
| 27 | + /// <param name="onnxModelService">The onnx model service.</param> |
| 28 | + public FeatureExtractorService(IOnnxModelService onnxModelService, ILogger<FeatureExtractorService> logger) |
| 29 | + { |
| 30 | + _logger = logger; |
| 31 | + _onnxModelService = onnxModelService; |
| 32 | + } |
| 33 | + |
| 34 | + |
| 35 | + /// <summary> |
| 36 | + /// Generates the canny image mask. |
| 37 | + /// </summary> |
| 38 | + /// <param name="controlNetModel">The control net model.</param> |
| 39 | + /// <param name="inputImage">The input image.</param> |
| 40 | + /// <param name="height">The height.</param> |
| 41 | + /// <param name="width">The width.</param> |
| 42 | + /// <returns></returns> |
| 43 | + public async Task<InputImage> CannyImage(FeatureExtractorModelSet controlNetModel, InputImage inputImage, int height, int width) |
| 44 | + { |
| 45 | + _logger.LogInformation($"[CannyImage] - Generating Canny image..."); |
| 46 | + var controlImage = await inputImage.ToDenseTensorAsync(height, width, ImageNormalizeType.ZeroToOne); |
| 47 | + var metadata = _onnxModelService.GetModelMetadata(controlNetModel, OnnxModelType.Annotation); |
| 48 | + using (var inferenceParameters = new OnnxInferenceParameters(metadata)) |
| 49 | + { |
| 50 | + inferenceParameters.AddInputTensor(controlImage); |
| 51 | + inferenceParameters.AddOutputBuffer(new[] { 1, 1, height, width }); |
| 52 | + |
| 53 | + var results = await _onnxModelService.RunInferenceAsync(controlNetModel, OnnxModelType.Annotation, inferenceParameters); |
| 54 | + using (var result = results.First()) |
| 55 | + { |
| 56 | + var testImage = result.ToDenseTensor().Repeat(3); |
| 57 | + var imageTensor = new DenseTensor<float>(controlImage.Dimensions); |
| 58 | + for (int i = 0; i < testImage.Length; i++) |
| 59 | + imageTensor.SetValue(i, testImage.GetValue(i)); |
| 60 | + |
| 61 | + var maskImage = imageTensor.ToImageMask(); |
| 62 | + //await maskImage.SaveAsPngAsync("D:\\Canny.png"); |
| 63 | + _logger.LogInformation($"[CannyImage] - Canny image generation complete."); |
| 64 | + return new InputImage(maskImage); |
| 65 | + } |
| 66 | + } |
| 67 | + } |
| 68 | + |
| 69 | + |
| 70 | + /// <summary> |
| 71 | + /// Generates the hard edge image mask. |
| 72 | + /// </summary> |
| 73 | + /// <param name="controlNetModel">The control net model.</param> |
| 74 | + /// <param name="inputImage">The input image.</param> |
| 75 | + /// <param name="height">The height.</param> |
| 76 | + /// <param name="width">The width.</param> |
| 77 | + /// <returns></returns> |
| 78 | + public async Task<InputImage> HedImage(FeatureExtractorModelSet controlNetModel, InputImage inputImage, int height, int width) |
| 79 | + { |
| 80 | + _logger.LogInformation($"[HedImage] - Generating HardEdge image..."); |
| 81 | + var controlImage = await inputImage.ToDenseTensorAsync(height, width, ImageNormalizeType.ZeroToOne); |
| 82 | + var metadata = _onnxModelService.GetModelMetadata(controlNetModel, OnnxModelType.Annotation); |
| 83 | + using (var inferenceParameters = new OnnxInferenceParameters(metadata)) |
| 84 | + { |
| 85 | + inferenceParameters.AddInputTensor(controlImage); |
| 86 | + inferenceParameters.AddOutputBuffer(new[] { 1, 1, height, width }); |
| 87 | + |
| 88 | + var results = await _onnxModelService.RunInferenceAsync(controlNetModel, OnnxModelType.Annotation, inferenceParameters); |
| 89 | + using (var result = results.First()) |
| 90 | + { |
| 91 | + var testImage = result.ToDenseTensor().Repeat(3); |
| 92 | + var imageTensor = new DenseTensor<float>(controlImage.Dimensions); |
| 93 | + for (int i = 0; i < testImage.Length; i++) |
| 94 | + imageTensor.SetValue(i, testImage.GetValue(i)); |
| 95 | + |
| 96 | + var maskImage = imageTensor.ToImageMask(); |
| 97 | + //await maskImage.SaveAsPngAsync("D:\\Hed.png"); |
| 98 | + _logger.LogInformation($"[HedImage] - HardEdge image generation complete."); |
| 99 | + return new InputImage(maskImage); |
| 100 | + } |
| 101 | + } |
| 102 | + } |
| 103 | + |
| 104 | + |
| 105 | + /// <summary> |
| 106 | + /// Generates the depth image mask. |
| 107 | + /// </summary> |
| 108 | + /// <param name="controlNetModel">The control net model.</param> |
| 109 | + /// <param name="inputImage">The input image.</param> |
| 110 | + /// <param name="height">The height.</param> |
| 111 | + /// <param name="width">The width.</param> |
| 112 | + /// <returns></returns> |
| 113 | + public async Task<InputImage> DepthImage(FeatureExtractorModelSet controlNetModel, InputImage inputImage, int height, int width) |
| 114 | + { |
| 115 | + _logger.LogInformation($"[DepthImage] - Generating Depth image..."); |
| 116 | + var controlImage = await inputImage.ToDenseTensorAsync(height, width, ImageNormalizeType.ZeroToOne); |
| 117 | + var metadata = _onnxModelService.GetModelMetadata(controlNetModel, OnnxModelType.Annotation); |
| 118 | + using (var inferenceParameters = new OnnxInferenceParameters(metadata)) |
| 119 | + { |
| 120 | + inferenceParameters.AddInputTensor(controlImage); |
| 121 | + inferenceParameters.AddOutputBuffer(new[] { 1, 1, height, width }); |
| 122 | + |
| 123 | + var results = await _onnxModelService.RunInferenceAsync(controlNetModel, OnnxModelType.Annotation, inferenceParameters); |
| 124 | + using (var result = results.First()) |
| 125 | + { |
| 126 | + var testImage = result.ToDenseTensor().Repeat(3); |
| 127 | + var imageTensor = new DenseTensor<float>(controlImage.Dimensions); |
| 128 | + for (int i = 0; i < testImage.Length; i++) |
| 129 | + imageTensor.SetValue(i, testImage.GetValue(i)); |
| 130 | + |
| 131 | + NormalizeDepthTensor(imageTensor); |
| 132 | + var maskImage = imageTensor.ToImageMask(); |
| 133 | + //await maskImage.SaveAsPngAsync("D:\\Depth.png"); |
| 134 | + _logger.LogInformation($"[DepthImage] - Depth image generation complete."); |
| 135 | + return new InputImage(maskImage); |
| 136 | + } |
| 137 | + } |
| 138 | + } |
| 139 | + |
| 140 | + |
| 141 | + /// <summary> |
| 142 | + /// Normalizes the depth tensor. |
| 143 | + /// </summary> |
| 144 | + /// <param name="value">The value.</param> |
| 145 | + public static void NormalizeDepthTensor(DenseTensor<float> value) |
| 146 | + { |
| 147 | + var values = value.Buffer.Span; |
| 148 | + float min = float.PositiveInfinity, max = float.NegativeInfinity; |
| 149 | + foreach (var val in values) |
| 150 | + { |
| 151 | + if (min > val) min = val; |
| 152 | + if (max < val) max = val; |
| 153 | + } |
| 154 | + |
| 155 | + var range = max - min; |
| 156 | + for (var i = 0; i < values.Length; i++) |
| 157 | + { |
| 158 | + values[i] = (values[i] - min) / range; |
| 159 | + } |
| 160 | + } |
| 161 | + } |
| 162 | +} |
0 commit comments