-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathload_cogvideox_lora.py
132 lines (118 loc) · 4.7 KB
/
load_cogvideox_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2024 The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import random
import time
from diffusers.utils import export_to_video
from diffusers.image_processor import VaeImageProcessor
from datetime import datetime, timedelta
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler, CogVideoXDPMScheduler
import os
import torch
import argparse
device = "cuda" if torch.cuda.is_available() else "cpu"
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--lora_weights_path",
type=str,
default=None,
required=True,
help="Path to lora weights.",
)
parser.add_argument(
"--lora_r",
type=int,
default=128,
help="""LoRA weights have a rank parameter, with the default for 2B trans set at 128 and 5B trans set at 256.
This part is used to calculate the value for lora_scale, which is by default divided by the alpha value,
used for stable learning and to prevent underflow. In the SAT training framework,
alpha is set to 1 by default. The higher the rank, the better the expressive capability,
but it requires more memory and training time. Increasing this number blindly isn't always better.
The formula for lora_scale is: lora_r / alpha.
""",
)
parser.add_argument(
"--lora_alpha",
type=int,
default=1,
help="""LoRA weights have a rank parameter, with the default for 2B trans set at 128 and 5B trans set at 256.
This part is used to calculate the value for lora_scale, which is by default divided by the alpha value,
used for stable learning and to prevent underflow. In the SAT training framework,
alpha is set to 1 by default. The higher the rank, the better the expressive capability,
but it requires more memory and training time. Increasing this number blindly isn't always better.
The formula for lora_scale is: lora_r / alpha.
""",
)
parser.add_argument(
"--prompt",
type=str,
help="prompt",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="The output directory where the model predictions and checkpoints will be written.",
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
pipe = CogVideoXPipeline.from_pretrained(
args.pretrained_model_name_or_path, torch_dtype=torch.bfloat16
).to(device)
pipe.load_lora_weights(
args.lora_weights_path,
weight_name="pytorch_lora_weights.safetensors",
adapter_name="cogvideox-lora",
)
# pipe.fuse_lora(lora_scale=args.lora_alpha/args.lora_r, ['transformer'])
lora_scaling = args.lora_alpha / args.lora_r
pipe.set_adapters(["cogvideox-lora"], [lora_scaling])
pipe.scheduler = CogVideoXDPMScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing"
)
os.makedirs(args.output_dir, exist_ok=True)
latents = pipe(
prompt=args.prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
use_dynamic_cfg=True,
output_type="pt",
guidance_scale=3.0,
generator=torch.Generator(device="cpu").manual_seed(42),
).frames
batch_size = latents.shape[0]
batch_video_frames = []
for batch_idx in range(batch_size):
pt_image = latents[batch_idx]
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
batch_video_frames.append(image_pil)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
video_path = f"{args.output_dir}/{timestamp}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
tensor = batch_video_frames[0]
fps = math.ceil((len(batch_video_frames[0]) - 1) / 6)
export_to_video(tensor, video_path, fps=fps)