-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinversions.cpp
124 lines (115 loc) · 3.21 KB
/
inversions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include <iostream>
#include <vector>
using std::vector;
long long merge_and_count_split_inversions(vector<int> &arr, vector<int> &aux, size_t low, size_t mid, size_t high)
{
int k = low, i = low, j = mid + 1;
int inversionCount = 0;
// While there are elements in the left and right runs
while (i <= mid && j <= high)
{
if (arr[i] <= arr[j])
{
aux[k++] = arr[i++];
}
else
{
aux[k++] = arr[j++];
inversionCount += (mid - i + 1); // NOTE
}
}
// Copy remaining elements
while (i <= mid)
aux[k++] = arr[i++];
// Don't need to copy second half
// copy back to the original array to reflect sorted order
for (int i = low; i <= high; i++)
arr[i] = aux[i];
return inversionCount;
}
long long get_number_of_inversions(vector<int> &a, vector<int> &b, size_t left, size_t right)
{
long long number_of_inversions = 0;
if (right == left)
{
return 0;
}
size_t mid = left + ((right - left) / 2);
number_of_inversions += get_number_of_inversions(a, b, left, mid);
number_of_inversions += get_number_of_inversions(a, b, mid + 1, right);
number_of_inversions += merge_and_count_split_inversions(a, b, left, mid, right);
return number_of_inversions;
}
int main()
{
int n;
std::cin >> n;
vector<int> a(n);
for (size_t i = 0; i < n; i++)
{
std::cin >> a[i];
}
vector<int> b = a;
std::cout << get_number_of_inversions(a, b, 0, a.size() - 1) << '\n';
}
/**
* #include <stdio.h>
// Merge two sorted subarrays arr[low .. mid] and arr[mid + 1 .. high]
int Merge(int arr[], int aux[], int low, int mid, int high)
{
int k = low, i = low, j = mid + 1;
int inversionCount = 0;
// While there are elements in the left and right runs
while (i <= mid && j <= high)
{
if (arr[i] <= arr[j])
{
aux[k++] = arr[i++];
}
else
{
aux[k++] = arr[j++];
inversionCount += (mid - i + 1); // NOTE
}
}
// Copy remaining elements
while (i <= mid)
aux[k++] = arr[i++];
// Don't need to copy second half
// copy back to the original array to reflect sorted order
for (int i = low; i <= high; i++)
arr[i] = aux[i];
return inversionCount;
}
// Sort array arr [low..high] using auxiliary array aux
int MergeSort(int arr[], int aux[], int low, int high)
{
// Base case
if (high == low) // if run size == 1
return 0;
// find mid point
int mid = (low + ((high - low) >> 1));
printf("mid is:%d\n", mid);
int inversionCount = 0;
// recursively split runs into two halves until run size == 1,
// then merge them and return back up the call chain
// split / merge left half
inversionCount += MergeSort(arr, aux, low, mid);
// split / merge right half
inversionCount += MergeSort(arr, aux, mid + 1, high);
// merge the two half runs
inversionCount += Merge(arr, aux, low, mid, high);
return inversionCount;
}
int main()
{
int arr[] = {2, 3, 9, 2, 9};
int N = sizeof(arr) / sizeof(arr[0]);
int aux[N];
for (int i = 0; i < N; i++)
aux[i] = arr[i];
// get inversion count by performing merge sort on arr
printf("Inversion count is %d", MergeSort(arr, aux, 0, N - 1));
return 0;
}
*/