1
- using Microsoft . VisualStudio . TestPlatform . Utilities ;
2
- using Microsoft . VisualStudio . TestTools . UnitTesting ;
1
+ using Microsoft . VisualStudio . TestTools . UnitTesting ;
3
2
using System ;
4
- using System . Collections . Generic ;
5
- using System . Linq ;
6
- using System . Text ;
7
- using System . Threading . Tasks ;
8
- using System . Xml . Linq ;
9
- using Tensorflow . Operations ;
10
- using static Tensorflow . Binding ;
11
- using static Tensorflow . KerasApi ;
12
- using Tensorflow . NumPy ;
13
- using Microsoft . VisualBasic ;
14
- using static HDF . PInvoke . H5T ;
15
- using Tensorflow . Keras . UnitTest . Helpers ;
3
+ using Tensorflow ;
16
4
using Tensorflow . Keras . Optimizers ;
5
+ using Tensorflow . NumPy ;
6
+ using static Tensorflow . KerasApi ;
17
7
18
- namespace Tensorflow . Keras . UnitTest
8
+ namespace TensorFlowNET . Keras . UnitTest
19
9
{
20
10
[ TestClass ]
21
11
public class MultiInputModelTest
22
12
{
23
13
[ TestMethod ]
24
- public void SimpleModel ( )
14
+ public void LeNetModel ( )
25
15
{
26
16
var inputs = keras . Input ( ( 28 , 28 , 1 ) ) ;
27
17
var conv1 = keras . layers . Conv2D ( 16 , ( 3 , 3 ) , activation : "relu" , padding : "same" ) . Apply ( inputs ) ;
@@ -40,7 +30,7 @@ public void SimpleModel()
40
30
var concat = keras . layers . Concatenate ( ) . Apply ( ( flat1 , flat1_2 ) ) ;
41
31
var dense1 = keras . layers . Dense ( 512 , activation : "relu" ) . Apply ( concat ) ;
42
32
var dense2 = keras . layers . Dense ( 128 , activation : "relu" ) . Apply ( dense1 ) ;
43
- var dense3 = keras . layers . Dense ( 10 , activation : "relu" ) . Apply ( dense2 ) ;
33
+ var dense3 = keras . layers . Dense ( 10 , activation : "relu" ) . Apply ( dense2 ) ;
44
34
var output = keras . layers . Softmax ( - 1 ) . Apply ( dense3 ) ;
45
35
46
36
var model = keras . Model ( ( inputs , inputs_2 ) , output ) ;
@@ -52,7 +42,7 @@ public void SimpleModel()
52
42
{
53
43
TrainDir = "mnist" ,
54
44
OneHot = false ,
55
- ValidationSize = 59000 ,
45
+ ValidationSize = 59900 ,
56
46
} ) . Result ;
57
47
58
48
var loss = keras . losses . SparseCategoricalCrossentropy ( ) ;
@@ -64,6 +54,11 @@ public void SimpleModel()
64
54
65
55
var x = new NDArray [ ] { x1 , x2 } ;
66
56
model . fit ( x , dataset . Train . Labels , batch_size : 8 , epochs : 3 ) ;
57
+
58
+ x1 = np . ones ( ( 1 , 28 , 28 , 1 ) , TF_DataType . TF_FLOAT ) ;
59
+ x2 = np . zeros ( ( 1 , 28 , 28 , 1 ) , TF_DataType . TF_FLOAT ) ;
60
+ var pred = model . predict ( ( x1 , x2 ) ) ;
61
+ Console . WriteLine ( pred ) ;
67
62
}
68
63
}
69
64
}
0 commit comments