diff --git a/docs/source/ko/using-diffusers/img2img.mdx b/docs/source/ko/using-diffusers/img2img.mdx new file mode 100644 index 000000000000..764df6a72cf8 --- /dev/null +++ b/docs/source/ko/using-diffusers/img2img.mdx @@ -0,0 +1,100 @@ + + +# 텍스트 기반 image-to-image 생성 + +[[Colab에서 열기]] + +[`StableDiffusionImg2ImgPipeline`]을 사용하면 텍스트 프롬프트와 시작 이미지를 전달하여 새 이미지 생성의 조건을 지정할 수 있습니다. + +시작하기 전에 필요한 라이브러리가 모두 설치되어 있는지 확인하세요: + +```bash +!pip install diffusers transformers ftfy accelerate +``` + +[`nitrosocke/Ghibli-Diffusion`](https://huggingface.co/nitrosocke/Ghibli-Diffusion)과 같은 사전 학습된 stable diffusion 모델로 [`StableDiffusionImg2ImgPipeline`]을 생성하여 시작하세요. + + +```python +import torch +import requests +from PIL import Image +from io import BytesIO +from diffusers import StableDiffusionImg2ImgPipeline + +device = "cuda" +pipe = StableDiffusionImg2ImgPipeline.from_pretrained("nitrosocke/Ghibli-Diffusion", torch_dtype=torch.float16).to( + device +) +``` + +초기 이미지를 다운로드하고 사전 처리하여 파이프라인에 전달할 수 있습니다: + +```python +url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" + +response = requests.get(url) +init_image = Image.open(BytesIO(response.content)).convert("RGB") +init_image.thumbnail((768, 768)) +init_image +``` + +
+ +
+ + + +💡 `strength`는 입력 이미지에 추가되는 노이즈의 양을 제어하는 0.0에서 1.0 사이의 값입니다. 1.0에 가까운 값은 다양한 변형을 허용하지만 입력 이미지와 의미적으로 일치하지 않는 이미지를 생성합니다. + + + +프롬프트를 정의하고(지브리 스타일(Ghibli-style)에 맞게 조정된 이 체크포인트의 경우 프롬프트 앞에 `ghibli style` 토큰을 붙여야 합니다) 파이프라인을 실행합니다: + +```python +prompt = "ghibli style, a fantasy landscape with castles" +generator = torch.Generator(device=device).manual_seed(1024) +image = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator).images[0] +image +``` + +
+ +
+ +다른 스케줄러로 실험하여 출력에 어떤 영향을 미치는지 확인할 수도 있습니다: + +```python +from diffusers import LMSDiscreteScheduler + +lms = LMSDiscreteScheduler.from_config(pipe.scheduler.config) +pipe.scheduler = lms +generator = torch.Generator(device=device).manual_seed(1024) +image = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator).images[0] +image +``` + +
+ +
+ +아래 공백을 확인하고 `strength` 값을 다르게 설정하여 이미지를 생성해 보세요. `strength`를 낮게 설정하면 원본 이미지와 더 유사한 이미지가 생성되는 것을 확인할 수 있습니다. + +자유롭게 스케줄러를 [`LMSDiscreteScheduler`]로 전환하여 출력에 어떤 영향을 미치는지 확인해 보세요. + + \ No newline at end of file diff --git a/docs/source/ko/using-diffusers/unconditional_image_generation.mdx b/docs/source/ko/using-diffusers/unconditional_image_generation.mdx new file mode 100644 index 000000000000..95a1613d6062 --- /dev/null +++ b/docs/source/ko/using-diffusers/unconditional_image_generation.mdx @@ -0,0 +1,56 @@ + + +# 무조건적 이미지 생성 + +[[Colab에서 열기]] + +무조건적 이미지 생성은 비교적 간단한 작업입니다. 모델이 텍스트나 이미지와 같은 추가 조건 없이 이미 학습된 학습 데이터와 유사한 이미지만 생성합니다. + +['DiffusionPipeline']은 추론을 위해 미리 학습된 diffusion 시스템을 사용하는 가장 쉬운 방법입니다. + +먼저 ['DiffusionPipeline']의 인스턴스를 생성하고 다운로드할 파이프라인의 [체크포인트](https://huggingface.co/models?library=diffusers&sort=downloads)를 지정합니다. 허브의 🧨 diffusion 체크포인트 중 하나를 사용할 수 있습니다(사용할 체크포인트는 나비 이미지를 생성합니다). + + + +💡 나만의 무조건적 이미지 생성 모델을 학습시키고 싶으신가요? 학습 가이드를 살펴보고 나만의 이미지를 생성하는 방법을 알아보세요. + + + + +이 가이드에서는 무조건적 이미지 생성에 ['DiffusionPipeline']과 [DDPM](https://arxiv.org/abs/2006.11239)을 사용합니다: + + ```python + >>> from diffusers import DiffusionPipeline + + >>> generator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128") + ``` +[diffusion 파이프라인]은 모든 모델링, 토큰화, 스케줄링 구성 요소를 다운로드하고 캐시합니다. 이 모델은 약 14억 개의 파라미터로 구성되어 있기 때문에 GPU에서 실행할 것을 강력히 권장합니다. PyTorch에서와 마찬가지로 제너레이터 객체를 GPU로 옮길 수 있습니다: + ```python + >>> generator.to("cuda") + ``` +이제 제너레이터를 사용하여 이미지를 생성할 수 있습니다: + ```python + >>> image = generator().images[0] + ``` +출력은 기본적으로 [PIL.Image](https://pillow.readthedocs.io/en/stable/reference/Image.html?highlight=image#the-image-class) 객체로 감싸집니다. + +다음을 호출하여 이미지를 저장할 수 있습니다: + ```python + >>> image.save("generated_image.png") + ``` + +아래 스페이스(데모 링크)를 이용해 보고, 추론 단계의 매개변수를 자유롭게 조절하여 이미지 품질에 어떤 영향을 미치는지 확인해 보세요! + + + +