From 2657305b81df22d697e201efe76147c9f3d175f3 Mon Sep 17 00:00:00 2001 From: revital Date: Tue, 22 Aug 2023 14:51:12 +0300 Subject: [PATCH 01/10] Add ClearML experiment management tutorial Signed-off-by: revital --- README.md | 3 + .../unet_segmentation_3d_ignite_clearml.ipynb | 630 ++++++++++++++++++ 2 files changed, 633 insertions(+) create mode 100644 experiment_management/unet_segmentation_3d_ignite_clearml.ipynb diff --git a/README.md b/README.md index d59d2f9beb..401e541fad 100644 --- a/README.md +++ b/README.md @@ -146,6 +146,9 @@ An example of experiment management with [Aim](https://aimstack.io/aim-monai-tut An example of experiment management with [MLFlow](https://www.mlflow.org/docs/latest/tracking.html), using 3D spleen segmentation as an example. ##### [MONAI bundle integrates MLFlow](./experiment_management/bundle_integrate_mlflow.ipynb) An example shows how to easily enable and customize the MLFlow for experiment management in MONAI bundle. +##### [ClearML](./experiment_management/unet_segmentation_3d_ignite_clearml) +An example of experiment management with [ClearML](https://clear.ml/docs/latest/docs/), using 3D Segmentation with UNet as an example. + #### **Federated Learning** ##### [NVFlare](./federated_learning/nvflare) diff --git a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb new file mode 100644 index 0000000000..1a7ffc2a2f --- /dev/null +++ b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb @@ -0,0 +1,630 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "3mqoATXZGTAX" + }, + "source": [ + "Copyright (c) MONAI Consortium \n", + "Licensed under the Apache License, Version 2.0 (the \"License\"); \n", + "you may not use this file except in compliance with the License. \n", + "You may obtain a copy of the License at \n", + "    http://www.apache.org/licenses/LICENSE-2.0 \n", + "Unless required by applicable law or agreed to in writing, software \n", + "distributed under the License is distributed on an \"AS IS\" BASIS, \n", + "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. \n", + "See the License for the specific language governing permissions and \n", + "limitations under the License.\n", + "\n", + "# Experiment Management with ClearML\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/main/3d_segmentation/unet_segmentation_3d_ignite.ipynb)\n", + "\n", + "This tutorial shows how to use ClearML to manage MONAI experiments. You can integrate ClearML into your code using Monai's built-in handlers: `ClearMLImageHandler`, `ClearMLStatsHandler`, and `ModelCheckpoint`.\n", + "\n", + "The MONAI example used here is [3D segmentation with UNet](https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/unet_segmentation_3d_ignite.ipynb)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VUefxTkGGTAc" + }, + "source": [ + "## Setup environment\n", + "\n", + "`clearml` comes as part of the `monai[all]` installation. For more information about integrating ClearML into your Monai code, see [here](https://clear.ml/docs/latest/docs/integrations/monai). For more information about using ClearML (experiment management, data management, pipelines, model serving, and more), see [ClearML's official documentation](https://clear.ml/docs/latest/docs/)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OUMIxMjvGTAd" + }, + "outputs": [], + "source": [ + "!python -c \"import monai\" || pip install -q \"monai-weekly[ignite, nibabel, tensorboard, clearml]\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s-ORDi_qZTYM" + }, + "source": [ + "### Set up ClearML ⚓\n", + "\n", + "1. To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 server options:\n", + "\n", + " * Sign up for free to the [ClearML Hosted Service](https://app.clear.ml/)\n", + " * Set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server).\n", + "\n", + "\n", + "\n", + "2. Add you ClearML credentials below. ClearML will use these credentials to connect to your server (see instructions for generating credentials [here](https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps/#jupyter-notebook))." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ofvwifHWG0SK" + }, + "outputs": [], + "source": [ + "# clearml credentials\n", + "%env CLEARML_WEB_HOST=''\n", + "%env CLEARML_API_HOST=''\n", + "%env CLEARML_FILES_HOST=''\n", + "%env CLEARML_API_ACCESS_KEY=''\n", + "%env CLEARML_API_SECRET_KEY=''\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "G-L36u4sGTAg" + }, + "source": [ + "## Setup imports" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "VAWF4EftGTAh" + }, + "outputs": [], + "source": [ + "import glob\n", + "import logging\n", + "import os\n", + "from pathlib import Path\n", + "import shutil\n", + "import sys\n", + "import tempfile\n", + "\n", + "import nibabel as nib\n", + "import numpy as np\n", + "from monai.config import print_config\n", + "from monai.data import ArrayDataset, create_test_image_3d, decollate_batch, DataLoader\n", + "from monai.handlers import (\n", + " MeanDice,\n", + " StatsHandler,\n", + ")\n", + "# import the clearml handlers\n", + "from monai.handlers.clearml_handlers import ClearMLImageHandler, ClearMLStatsHandler\n", + "from monai.losses import DiceLoss\n", + "from monai.networks.nets import UNet\n", + "from monai.transforms import (\n", + " Activations,\n", + " EnsureChannelFirst,\n", + " AsDiscrete,\n", + " Compose,\n", + " LoadImage,\n", + " RandSpatialCrop,\n", + " Resize,\n", + " ScaleIntensity,\n", + ")\n", + "from monai.utils import first\n", + "\n", + "import ignite\n", + "import torch\n", + "print_config()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cBN8rQJcGTAk" + }, + "source": [ + "## Setup data directory\n", + "\n", + "You can specify a directory with the `MONAI_DATA_DIRECTORY` environment variable. \n", + "This allows you to save results and reuse downloads. \n", + "If not specified a temporary directory will be used." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BSjqI-ZBGTAk" + }, + "outputs": [], + "source": [ + "directory = os.environ.get(\"MONAI_DATA_DIRECTORY\")\n", + "root_dir = tempfile.mkdtemp() if directory is None else directory\n", + "print(root_dir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LzxP-l1nGTAl" + }, + "source": [ + "## Setup logging" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GGHooZZwGTAl" + }, + "outputs": [], + "source": [ + "logging.basicConfig(stream=sys.stdout, level=logging.INFO)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eIDTWNVxGTAm" + }, + "source": [ + "## Setup demo data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "l0jR_jz8GTAn" + }, + "outputs": [], + "source": [ + "for i in range(40):\n", + " im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)\n", + "\n", + " n = nib.Nifti1Image(im, np.eye(4))\n", + " nib.save(n, os.path.join(root_dir, f\"im{i}.nii.gz\"))\n", + "\n", + " n = nib.Nifti1Image(seg, np.eye(4))\n", + " nib.save(n, os.path.join(root_dir, f\"seg{i}.nii.gz\"))\n", + "\n", + "images = sorted(glob.glob(os.path.join(root_dir, \"im*.nii.gz\")))\n", + "segs = sorted(glob.glob(os.path.join(root_dir, \"seg*.nii.gz\")))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8FUIYNO0GTAn" + }, + "source": [ + "## Setup transforms, dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "g5gz3rECGTAo" + }, + "outputs": [], + "source": [ + "# Define transforms for image and segmentation\n", + "imtrans = Compose(\n", + " [\n", + " LoadImage(image_only=True),\n", + " ScaleIntensity(),\n", + " EnsureChannelFirst(),\n", + " RandSpatialCrop((96, 96, 96), random_size=False),\n", + " ]\n", + ")\n", + "segtrans = Compose(\n", + " [\n", + " LoadImage(image_only=True),\n", + " EnsureChannelFirst(),\n", + " RandSpatialCrop((96, 96, 96), random_size=False),\n", + " ]\n", + ")\n", + "\n", + "# Define nifti dataset, dataloader\n", + "ds = ArrayDataset(images, imtrans, segs, segtrans)\n", + "# loader = DataLoader(ds, batch_size=10, num_workers=2, pin_memory=torch.cuda.is_available())\n", + "loader = DataLoader(ds, batch_size=10, num_workers=2, pin_memory=False)\n", + "im, seg = first(loader)\n", + "print(im.shape, seg.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6zl4_zeSGTAp" + }, + "source": [ + "## Create Model, Loss, Optimizer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XT1D-a1-GTAp" + }, + "outputs": [], + "source": [ + "# Create UNet, DiceLoss and Adam optimizer\n", + "\n", + "device = None # torch.device(\"cuda:0\")\n", + "net = UNet(\n", + " spatial_dims=3,\n", + " in_channels=1,\n", + " out_channels=1,\n", + " channels=(16, 32, 64, 128, 256),\n", + " strides=(2, 2, 2, 2),\n", + " num_res_units=2,\n", + ").to(device)\n", + "\n", + "loss = DiceLoss(sigmoid=True)\n", + "lr = 1e-3\n", + "opt = torch.optim.Adam(net.parameters(), lr)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Xvduwsk8GTBm" + }, + "source": [ + "## Create supervised_trainer using ignite" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9Ocpt_MOGTBn" + }, + "outputs": [], + "source": [ + "# Create trainer\n", + "trainer = ignite.engine.create_supervised_trainer(net, opt, loss, device, False)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5vo9Eq33GTBn" + }, + "source": [ + "## Set up event handlers for checkpointing and logging\n", + "\n", + "Using a ClearML handler creates a ClearML Task, which captures your experiment's models, scalars, images, and more.\n", + "\n", + "The console output displays the task ID and a link to the task's page in the ClearML web UI." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cZTtFnySGTBo" + }, + "outputs": [], + "source": [ + "# optional section for checkpoint and clearml logging\n", + "# adding checkpoint handler to save models (network\n", + "# params and optimizer stats) during training\n", + "log_dir = os.path.join(root_dir, \"logs\")\n", + "checkpoint_handler = ignite.handlers.ModelCheckpoint(log_dir, \"net\", n_saved=10, require_empty=False)\n", + "trainer.add_event_handler(\n", + " event_name=ignite.engine.Events.EPOCH_COMPLETED,\n", + " handler=checkpoint_handler,\n", + " to_save={\"net\": net, \"opt\": opt},\n", + ")\n", + "\n", + "# StatsHandler prints loss at every iteration\n", + "# user can also customize print functions and can use output_transform to convert\n", + "# engine.state.output if it's not a loss value\n", + "train_stats_handler = StatsHandler(name=\"trainer\", output_transform=lambda x: x)\n", + "train_stats_handler.attach(trainer)\n", + "\n", + "\n", + "# ClearMLStatsHandler plots loss at every iteration\n", + "# Creates a ClearML Task which logs the scalar plots\n", + "task_name = \"UNet segmentation 3d\"\n", + "project_name = \"Monai example\"\n", + "\n", + "train_clearml_stats_handler = ClearMLStatsHandler(task_name=task_name,\n", + " project_name=project_name, log_dir=log_dir, output_transform=lambda x: x)\n", + "train_clearml_stats_handler.attach(trainer)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hBv81ENGGTBp" + }, + "source": [ + "## Add Validation every N epochs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "VYte_Cw6GTBp" + }, + "outputs": [], + "source": [ + "# optional section for model validation during training\n", + "validation_every_n_epochs = 1\n", + "# Set parameters for validation\n", + "metric_name = \"Mean_Dice\"\n", + "# add evaluation metric to the evaluator engine\n", + "val_metrics = {metric_name: MeanDice()}\n", + "post_pred = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])\n", + "post_label = Compose([AsDiscrete(threshold=0.5)])\n", + "# Ignite evaluator expects batch=(img, seg) and\n", + "# returns output=(y_pred, y) at every iteration,\n", + "# user can add output_transform to return other values\n", + "evaluator = ignite.engine.create_supervised_evaluator(\n", + " net,\n", + " val_metrics,\n", + " device,\n", + " True,\n", + " output_transform=lambda x, y, y_pred: (\n", + " [post_pred(i) for i in decollate_batch(y_pred)],\n", + " [post_label(i) for i in decollate_batch(y)],\n", + " ),\n", + ")\n", + "\n", + "# create a validation data loader\n", + "val_imtrans = Compose(\n", + " [\n", + " LoadImage(image_only=True),\n", + " ScaleIntensity(),\n", + " EnsureChannelFirst(),\n", + " Resize((96, 96, 96)),\n", + " ]\n", + ")\n", + "val_segtrans = Compose(\n", + " [\n", + " LoadImage(image_only=True),\n", + " EnsureChannelFirst(),\n", + " Resize((96, 96, 96)),\n", + " ]\n", + ")\n", + "val_ds = ArrayDataset(images[21:], val_imtrans, segs[21:], val_segtrans)\n", + "# val_loader = DataLoader(val_ds, batch_size=5, num_workers=8, pin_memory=torch.cuda.is_available())\n", + "val_loader = DataLoader(val_ds, batch_size=5, num_workers=8, pin_memory=False)\n", + "\n", + "\n", + "@trainer.on(ignite.engine.Events.EPOCH_COMPLETED(every=validation_every_n_epochs))\n", + "def run_validation(engine):\n", + " evaluator.run(val_loader)\n", + "\n", + "\n", + "# Add stats event handler to print validation stats via evaluator\n", + "val_stats_handler = StatsHandler(\n", + " name=\"evaluator\",\n", + " # no need to print loss value, so disable per iteration output\n", + " output_transform=lambda x: None,\n", + " # fetch global epoch number from trainer\n", + " global_epoch_transform=lambda x: trainer.state.epoch,\n", + ")\n", + "val_stats_handler.attach(evaluator)\n", + "\n", + "# add handler to record metrics to clearml at every validation epoch\n", + "val_clearml_stats_handler = ClearMLStatsHandler(\n", + " log_dir=log_dir,\n", + " # no need to plot loss value, so disable per iteration output\n", + " output_transform=lambda x: None,\n", + " # fetch global epoch number from trainer\n", + " global_epoch_transform=lambda x: trainer.state.epoch,\n", + ")\n", + "val_clearml_stats_handler.attach(evaluator)\n", + "\n", + "# add handler to draw the first image and the corresponding\n", + "# label and model output in the last batch\n", + "# here we draw the 3D output as GIF format along Depth\n", + "# axis, at every validation epoch\n", + "val_clearml_image_handler = ClearMLImageHandler(task_name=task_name,\n", + " project_name=project_name,\n", + " log_dir=log_dir,\n", + " batch_transform=lambda batch: (batch[0], batch[1]),\n", + " output_transform=lambda output: output[0],\n", + " global_iter_transform=lambda x: trainer.state.epoch,\n", + ")\n", + "evaluator.add_event_handler(\n", + " event_name=ignite.engine.Events.EPOCH_COMPLETED,\n", + " handler=val_clearml_image_handler,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VxXixOfHGTBq" + }, + "source": [ + "## Run training loop" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kW0K4mxIGTBt" + }, + "outputs": [], + "source": [ + "# create a training data loader\n", + "train_ds = ArrayDataset(images[:20], imtrans, segs[:20], segtrans)\n", + "train_loader = DataLoader(\n", + " train_ds,\n", + " batch_size=5,\n", + " shuffle=True,\n", + " num_workers=8,\n", + " # pin_memory=torch.cuda.is_available(),\n", + " pin_memory=False\n", + ")\n", + "\n", + "max_epochs = 10\n", + "trainer.run(train_loader, max_epochs)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Visualize results\n", + "\n", + "ClearML captures the models, scalar plots, and images logged with `ModelCheckpoint`, `ClearMLImageHandler`, and `ClearMLStatsHandler` respectively. View them in ClearML's web UI. When a task is created, the console output displays the task ID and a link to the task's page in the ClearML web UI.\n", + "\n", + "### Models\n", + "All model checkpoints logged with ModelCheckpoint can be viewed in the task's **Artifacts** tab.\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "7bPDjtbE7sCP" + } + }, + { + "cell_type": "markdown", + "source": [ + "![monai_clearml_models.png]()" + ], + "metadata": { + "id": "Uya6hN7At-C6" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Scalars\n", + "\n", + "View the logged metric plots in the task's **Scalars** tab.\n", + "\n" + ], + "metadata": { + "id": "kLs1tEXRt-Pp" + } + }, + { + "cell_type": "markdown", + "source": [ + "![monai_clearml_scalars.png]()" + ], + "metadata": { + "id": "DCLhp4e2uKsd" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Debug Samples\n", + "\n", + "View all images logged through ClearMLImageHandler in the task's **Debug Samples** tab. You can view the samples by metric at any iteration." + ], + "metadata": { + "id": "yjfeorgJuLUN" + } + }, + { + "cell_type": "markdown", + "source": [ + "![monai_clearml_debug_samples.png]()" + ], + "metadata": { + "id": "AFLJauKxt-Yy" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UFlaQUTXGTBv" + }, + "source": [ + "## Cleanup data directory" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "w6JE9lVQGTBw" + }, + "outputs": [], + "source": [ + "if directory is None:\n", + " shutil.rmtree(root_dir)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "## Close the ClearML Task\n", + "This changes the task status to `Completed`." + ], + "metadata": { + "id": "sT-5Zxg_7Ajm" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BAD6ACGGOLU3" + }, + "outputs": [], + "source": [ + "val_clearml_image_handler.clearml_task.close()" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From cad859d632a32c6c78db95bab2672f4e0515b1c8 Mon Sep 17 00:00:00 2001 From: revital Date: Tue, 22 Aug 2023 15:00:24 +0300 Subject: [PATCH 02/10] Add images Signed-off-by: revital --- .../unet_segmentation_3d_ignite_clearml.ipynb | 6 +++--- figures/monai_clearml_debug_samples.png | Bin 0 -> 41855 bytes figures/monai_clearml_models.png | Bin 0 -> 57683 bytes figures/monai_clearml_scalars.png | Bin 0 -> 77667 bytes 4 files changed, 3 insertions(+), 3 deletions(-) create mode 100644 figures/monai_clearml_debug_samples.png create mode 100644 figures/monai_clearml_models.png create mode 100644 figures/monai_clearml_scalars.png diff --git a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb index 1a7ffc2a2f..b070c661c6 100644 --- a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb +++ b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb @@ -512,7 +512,7 @@ { "cell_type": "markdown", "source": [ - "![monai_clearml_models.png]()" + "![Monai ClearML Models](./../figures/monai_clearml_models.png)" ], "metadata": { "id": "Uya6hN7At-C6" @@ -533,7 +533,7 @@ { "cell_type": "markdown", "source": [ - "![monai_clearml_scalars.png]()" + "![monai_clearml_scalars.png](./../figures/monai_clearml_scalars.png)" ], "metadata": { "id": "DCLhp4e2uKsd" @@ -553,7 +553,7 @@ { "cell_type": "markdown", "source": [ - "![monai_clearml_debug_samples.png]()" + "![monai_clearml_debug_samples.png](./../figures/monai_clearml_debug_samples.png)" ], "metadata": { "id": "AFLJauKxt-Yy" diff --git a/figures/monai_clearml_debug_samples.png b/figures/monai_clearml_debug_samples.png new file mode 100644 index 0000000000000000000000000000000000000000..c8e2271773375b8b1d960fb345d95ae155a5727a GIT binary patch literal 41855 zcmdSBXH=70^C*r-j~y(42nZY%qzQ=ht|CQ{-lU624Ly+1Q2|k;sPvN12|ZFmAfX&Z zK`EgVT8MxUAS4k2L=plwc;5Hi55K$q>;L6`xU*K)v!BV%JoC(+J+t@B?7TKL)?+`- zcbbijjs1cCeRDRpKUwXg%_onuFop3|KCH_Tpt;^XwmQs}Ro2ZhkGn>9+1Tn+&+NJU z$+|xkpl=IgW8>&L{2b}=uXxJFR>Jk*{$0yZr*+(!NUrgZ`x~NHPhGwL$JIM6CpeEC z6HW};I9~iJ(as)W7lwbK6j?hxJ#B68i>S4Zs2{09%oQCxsV~;K!0mN`>pYk6S1J8x z0Y=Zx>z|!}e}13PkGYZeq4lj#L*4*|5jdM8hi;T>^ze{7N9e!562I7U$P)_+b>0LE z9r>r-^!Ql(KP|SCr~iXH&-KSYs9XP{#1>lSQ;xE+HF-wui@Wi(a-IapzB9)h=)bPT z9d;fnKF`MXH*iM*=<9Fy$($?6X_lCqcaslA}#;dV`H# zaPf-^XkIC@<$af%%{!kHGbbys3fNCl<11n~1Iomq=8G-+I|Ht$sW$Q*zfx4>d9QLq z$ZC+=2)X?oeRV;9KrG!OIztjpgRpWI0*xsbd0 zK+D8<7d~LrXKH>|!mO7ClqCK> z1?@KX5e#)*V!xQEA?o| zpcba$&pP&SydF}ZJsHwS|pp4k2d~I`|g+OL+j%uBnTHfx7Yr$WgvmW;Z zCJP2T99`cVIVrWxb=+BDhDVG?*f485Sd=A=?>u*}va#J!SQmJ!jeDMdl9ZxZ*N2hi ztaRh!m2t~%=z>mhKS?2i(+onMj>ryZFj`Pol85lt6B{NUH?iR_tq844A@5AB_f^&U z*+(>eISNEr@_>>vk6gKJwK31oHW4lM7Uza%2MHY3^; z%b#G`syol*pWQ@N1SNm!;oo%^*_U@GnzFGy3%GYUQA}gITk3E%aNn$jMZWJq&iBJ5 zsbO}rQvfc(fc;UnndHf8I1K%he6N7~HRYs+2U-lNRp%`7Ac1;)>w_AsYLj?&ns^l| zj0bQAr8f9Jmq~qH?K-Hc@c7RO;(1Q}-W%Wlirg z{i+ECVE1|+$AE{UZLzj8&W;wTMBRd`I4QW*{Uz*_b*eb|W}h_H@1P2(K0_NEJj&0d zNEfJKP4rJEe{&-BM|2eWlfIF|#mX{~o{#}vH~RRqMei7~dls2ZBh?trYg;iwI^NyU zl`%qc2T6--{=M#zf|Um|OX@`ppH51BRZ3O#bRdeWdhMttbUb(RN6sdy)I~&Te?HT@ z6+^DEL#UCds&e`E<$zh+xut26Ni!~wr)h*aj!>=y} z8O?e4BhKHpW$YaZ(~CH*jVCcroni@UEw+&Lr0>E3u}MRE*=JZ(wf1sYmw=1!pPVYb zH+)dZ0+?mt58+Os z&K0HEjiDxwjB+hGXUdYn@VBU73eHBN9hk0m__l|g{)+Q6eUx1m29K;*C8kt-mfBnk zrk}?}^j$7%0xR9-4hkN zDQUXHpm_JLYfRfOXO8PU1weq~Wx0`IxeF}{{~>28bM-t|rZ;5-tgv+8YX-K(N5&g-0hJ_-(XSx zL6B5v>-^Oss~}g@lnK6n3}+~+-4mYcJOV# zn?_*?KiYv#!|nb&p6d{;u~IqQy%O);X+pt>zl}agro~`z-#?de6OdeP426Y#)0SVt zx{iI5(pju87%=JgNZap3uFRd`tK_cQ-5iYYg6<>8g^2@{M-Dx8^qpE8FCWB#ccUIP zTE)=<7_ml>aezJd6KB29vmrT`O$+j)$3w+Gf8>ueXQ){VkyTpM#siE3IS7t~mmM~R znHDz7>NKTgbue1Z)?`>CVeMRJ%dPv=_mNVePja1ReXzi{g022F<_oj7R#R_(ezOhl zT2EcENC5O6B~-PmNlxZg=(s$eFpkhki&nR{$h#%nv{Pqab|PjkT`<4d-~=B%mHi0l zd)jWUn}n(Mj4V~N;RwhJX3 za&S_z*{TrfRtTQuh>6h9I>V2*I%m5wM+|3gnU*(xrgR+z-Nk+ zb^OAvCmNG$`))5(;xU<6?*^Q^dCO-x*NWF7a9Q(dr&mnFN*Y zY}8uiBOP0P8LMrYzWs7EG1nb;-xQMxH=gZxqq2yb&b%=PS<%!5y>Jq#jQ;qWHR8c) z$=GLj{}C5ddCro)Ui!wcd2PzW@s&~Ib&Oq`H?&-RJ7u5VZQj29G06ApoAK{*@41Oi zRD?31!|7KSnojJ@Tw&Lu(l7-@&P*?8Ip#Ly;L8ymUnoouYF`T?WHW8$om2NbGoAL< zo=r;~=y!(gy0*)Dv?>a%){H)}_Fkj7uMRFpdBkjG7@%n5e`92!@z!WZPzNcT@gjQH z#A3od*(tJWq5Z^JVs*ng=iwinz8Rd2OFk3!jo_*SD_C9^=C0ddm|YFywL^cnww!=d0{H9ujb-KTBH4!avHaBIW3a0t(KYHAGOg4n|6r*=~=ozj3qY zsI)TcXgGIccwXa^C6lnrfHx8;B+1i7|{hf={ zU@s_Clb7tPb7Z=JMl|-a2X8DYw9k2BZ?tV`!;bp-nvS#Lod>M7*G>%qC)9oyuSn6l7L?=evsOnn=cnoN?!3IQO@PL#E$TJV z7YFkPsd4j*8c^UjJB2SQ`CtesLc|NZt{#Gj*dx zekov%*K}B5>>&Rs!Y;3Je1^7?hR`w4615^3-qR9p%H4Or0ZH)u1dplUq3{<2`6`jH zcIrkc!*6)ZIn^p0fV_1K0wi5dPR_bLmjgfB$%9g_K*(T*gf0nL(u%Z$u}B87$=n|~ z4&{rQx$GEI73Bm-R_sG*;s!ZznkK30Xk9?x#gGBy;CSiX+U@a$-SB|$OpkrcE}bc4 zvr4rl@5xPD=Q=ldXA0)LD}f9{ck#xU;m%C@u4p2Aj@^)|QQCkiN0Ovf_pB|7mTH^W z`qKfYDPiXOW;059-EI`5ViJ%;vpZi_j~A>1gd?ptFb|pg12+*SS~gm(%`k%V1!EGt zU{=u*H?T5CbH-lxC#*aUioxx7YRfCOS{lwl%XltbvSj3P*5uU|>_ul}Uh#r$XfhT> zO{9j8(8N<@u%1rAxqcm(#&&)l%xEXJmAWUcR=n`(4{pl0k($=!it{-YhI+!PjRw}a zQG4(!q}Pp%&=!pNT-}$eSUNXLo9<|b+E2Gr_hFc=jKwvclgm-ch~n|N#WU$1XJ|Kv zX3&@+sVr+>0K!HEJ?-@fg^Vo3Jj54e%vr}Thjh}Ui5UWZMS42Kzhk_0GpL-M#32zg z82Q@-AE7k@;jU8@9uk7b(xUo*GS02q@OY{b;AXlx!H>W6(6PO-nAZL4wEiJNNNeTs zKPYjT@s08b-ncmH0CKp`=WYIyh=YLC^4SqR@#kx)S6J%=znsF#nC!xOCZBlx+0vGM z`cAS2w@sU)4Cbr)#&q&bmgjWhb#JYOdr=frk%17Xj!Z9*M}Seaf)>3WScYHT@{LvR z+pBz&I1`Cno4+ECLegbzR_TT>0qc+~z~(DWRnh$qi6Qq34k9uXGex{VL2TAWT$mwq z;JUF=d0>ETn=ZiD@JqaX@EzX}CXQ1B-nn=QM+BB+26?0myMmL3TeBSMBH&xc9*bu= zm(BE?!>*iC@*eri!nDn1YDcf6o3zOU=hmT!JXo*wKM8Aep>x>Q@>1o9EDjI_zIF9A zRC7-tJQqs~>{d%gS;sIJpBn8>J%T7bt>_4IbS}%@9F#*!qH?j8?mInuH$5Um_dYy{ z5K@;h5V4h%?@>B=CAdhib+oZvt93$A=jM2Kt->DvDD(@Rnd&@DIyazr;^o9Lu*I05 zTHyFxvjB;Uy!1ME3&?=F+Y9|F?-&y>Jwz&7C5+svil%} zI26_tO&?R~4ViFB2`17)79SJ1$?CLS_pmPO{z}%eqTH%W;WU%|Y6$Mr!+|{TkbqWk z*l0QNqv$|u^n;Z0j#b5rr&S~5I3rTyU$Un~k0wdut;KK7UIVTPZC)+nZYmtQZUE7B zDCvQA=%hxKG^&n+eT!$-X8j$?cm{%QBzZcWGMxP&i<&wPG}M~NAF!&6`2I5TL?&j` zQSoU*SEJ(B_lkb3O--4#HfFSRZh7|rT3)apT|Sqc2KU3anWuHA=m$y+9U*+rhgWt6 zWgRT8h7Sws^==|0vHi#cc`mHgQAp++!Qp*P*w;igqc0&p<)uB3X05?6#jV^6^nK%CfuraoZVje&zgwg$?*!&;9b2Lxb?n0He5WB4NQ+UVGy<^Ya zquO>s!4Byjr6{89BZ1>9^qKAzQ6xKd60`g_b5_26{#a`KbmJg~vi!2cTJnH#`EWv0 z!Fw%gL7R$^_1Y!y;8+!*FqL@omnw|ban5dy@US9iP@U4`gA#uY?HQ-Qqo1?NTvnl2 z&+X$<`dWG=Cd%>6wMWYMWoR)%vuhI{PYK5Sa$dc}FIc|P*b@a$@Faw3_jB5d6&Lll zR!|1)-<*?}X`h{WZldWIrliF#t`|Inv{-)EWfUHZr=Lt#zIOYr_@bz1?wQGt=GtvFL>v&2eH!=p$R|8u`gHZ@%R$G8yse$ z6i&k(G1uvuLIoE;{M;xg7^gdPbAVXbpv0ZsGvV#*=)dygObB+#-QDl*(orMx7li4E z-5?Y%46SWoU{Y3KhpZb{)5@u>gh!UHbHvKir-@r>cwEJ)<-#@)If&|X%A0bf@Jz_9 zx+lA{H#i> zAuGaWI~|FU`(NA^!}+UpEB*aVvewczrydgYejpDvypltIWLI)KEo+c4lbweAeel81 zn)!beR(~VzDIRN;l^Rfv4?FmrS2$MgiUlpr+l%bbpYihdqWKAKPXR!rv1qgUUO~cV? z{5O+|Wr6bOn2LKXFhFP!*>9cwlrMM@ApdQKUFCDvr*bs0-no_j1AZ{>OsG|KJ;j%v zS>YL>2c39rAfP!0O!&b*lfewJ4U?R1A+xsA%!BF!fwZcfC7kVZuf-xF~={{}KS2D@mj@gyYlqYeEU5YjPeUTUp}^xn`qsOIHQsT}7etTGl+ zD)TT}T~7yC&o5$H90O1iRN$OL3yKO?&(tZlu5BXdq_EuEuJIgOm%W|% zD_?B)As)|M6;KY)cQZ3HAla#S0>D2d+m+=k3L;yl)?wPy9glO|{gq2yVLMnbhE$tQ zPUsI*)$7x=uO;cFRQU9r9>}KGm&?cuhm}}lTtwTS(ZrV|SvgkGq@`m-bHw*SM;J1br^@v}u9xy@eafAtfCJ3bX_E=d5i}86%EP%Ri_DTi zt=Y<1__>Ojt?Vc78C6WbMww=zp&fyQvGTtx7KjJy$+ z+bORn*-YeYh#gO|89gl=0M=;6itRxKvu~MW zot8K}a;Qu3%X@=4&O9Gmh#Lk*)!|vob_tL*N?RscQ0cU&@D_0KA|8E}!15+MVSLKP z1**r_Is}ef44e(Ty`qp3KEhEFujnVx0EuuI2 z7ivUu_vxpl=Ip92QuZFWN2?9)9W59bNk1S=^^hWH*w*@-aQ|4emI7=47nGsMAyB;v zo>a@cEa~C>2{iKX!+`w0fo3Y zrw*6-$}WYa=fLqf2)EBwUas&dziu!ttZYOL4bDL9)QoHqG$-01<2Yt!;jOm@6a6FY zF;m4mvB$mEb84HYix1n8+pnfmTO2I>R-G3^gn#oei=(}%?8QahJChlHU91NE>ZG`4 z-POA;ndNvjd&-|{c7cIj;ZJ+5)`-T69R7;};D(|F2C-htv5pITk-Z7{y1XsW6#KC5 zs_<5W%lsL`v0eHpRV-2j@b=GLzW5I8QDw7l*b_}p_dV>Im)@GA1V(vA-Pe@lI!2Bc z04_nl((K~&nxd@Ao3nH)ee;_6Lg#qLov>{C2!pk%=Ye6;(gj(&3)?*o#qJ@8^@||SupVw>H0%{SXL17 zr;1o`#=2QIfU-7aawb1dV@$6%%rzKJd-mKpN%e5lSYRqs#LIhf0}Gkmk(1Hzv0Eb|1^FF+7H`j|0n9-0Q%*Bd;N?0H-LWYcl7;_zrZH%mZfJa z9MNwqCm!zjJdGQxHEionUaS6r+3;I^ZCx{0E2VbY%Fb>%v*~6#8aev45rsPRF)Wym zFTC~4NB>uEr*&1!ufk@(eFHbQ9xh(q%8HfC0vbV+QPwN3lYGkJI0VMqBV=%UBsu2G zctzpn1Fz!`t4y(bCI`@lo!O~U_Ugx}0FF%@x^;}C6lI+6dE1QiD z8d`q4P=F=)jV(+ZO@}I(fSGQ|_F|9->{Hx$2s)ZE#IPe~LXt*L6x5!ewEhjLy5+ia z92aV(1@28vp2~d}cK-pBvHHHl&sKpI;H)U+($c?*g{;ol z@<2g}c3$v(IW^}ns7j(2)_T>0HdN`0`-6LJ^c=7W;eC7tRV$5ZNLpASgI={pf%lQjZi-=GDaD zs_euNN3Ev-nPZZ|K74u^tv%&Hk!i$k1?+3z%ZNqB%KPWCEUQwI+9*k`^Evv}-!Z?& z!m4I4bIG&QUK%m_)sUfbb(vS7|7pT~k3C&cVR?{XdK9{Z!O=_gx|{$8n04P3Am!Fn zOOtEgLHe3xU16Y>Mq*;-e+EDQJeT786v+FKA75QyAw}bIWpHz263l72-a6v;_WCSI zHFw$ui`Lm+hZK~o|H7ye)RB+x$CQ1h40rFc@-`<`^Wl!pdewSJPj2!z>?zudlq55A z0~1KjP0}0+IkK1Ca;)r}KMZu@O%o`~{?VISG{@>Am~w~;NPh+#-kahpIkCT@43QPS z>$~`5oUyf|ig1ieJgq@BIqve06*$RrEI#?`+}ID(jk_M|H_8zU)6n8y78mnZ?W8m- zVr%WI+tn&tpt(Okom0T^cEAdppY-nZ+vtJ-WoHF`sJm@_z<758(dFd88~g<%KlO-M zkFQ%>%z?gO*uYOAEhSUUw$?}Sf%SaZeAUg)Jd)J7(xDQ=8L?IU*T%2ZU0uhdQ4bR| z(1=UB(;X%TYa><~7YE4G8I<&8ftv~nTKATanXgF|F4rR}V${HN;jpexQwO;9%-@rX zOPnnnxUl`%msPJRvz@f3oWPKZoHm%IX}#Pa=mWY~x&5_4YqSPOSy}c*W6@HlEw4GgYfb z%m<97kA%Z-&w={#?jh??o=+1!RxXgZ5X5=oJQq(TSjCG`(xm$O*WsioDF53lvlich z?H^C0eXBdO#UMlbn?KFCGw+KjVjy+TNuWqey{)Bu_VBLe(3@&C0#oMZZMN9=x2K@p z4`8&R7BhF}2q$xyxx8G5kd4a!Wclt;wM{4WcSr+P#EE)inyaLTUUP$z|4_4!7BjGV zZPpp=IB7NAWai(ZGj3l#*ia%L5Nz@#+ift&P9Kcd(TVttZ zGl*7cHP~#Bs9uUFpp5RjUhuYZD3?H5Rmzbg|H-+2`tz>KGtz8_PM%`j_{Ui1Y5;A{ zc&gsDOhQ^Zs2gw*OLH)aq6->Dg(lH2)r>S+ShoO^TA=i12th#b$|C0NoIT3$guT$P zjbRiNKQ`<4RTQMOqgs)SHsng1w2qqjQW+~?K3xS2ehu;slu-`-QK-opr32dt%Tr9$ z+NboyH7|J7uZb8S!Zwgku?}mww$3;Z9gpzrFnxBkAqSs>Z9B>o~W)CH%?a? zMML+g_}Xy)-Me45Rx0FFTV?95-}}d-o;UvO5BXN=VOnM^%a2G&wwU>4F>9U*KXcBr zr`hQAHZF?(y>a`y22YCx_j<^lUt3jy+MoaZxgTrCedpZ;^C#w6n{PifHI0QeO?M+L zf*%6F67o8_%|Xpa6s{lEHL+m+70Yd+LSBOf&v6TlWg6x5(!CKJLJ|`j4Yvu?aeAp& zKrH9Pa+-a}qN<7teF2s5eu#JL$;0eC8{3_hYhq^$154-<*X|k97Op3pt6ZOyb@QJp zG_ob;s|hAZ%)I}g-Gf=1YtL$A-``ptHl|+k1q{1fJuD<(!ATE?l3RZV(YRLIQ#)AY zNhhpWj=zTF=VO0y`t7aO#)C`o6N%$!gqvQGfnne5`^+*h4fMOnhqXxd`CWr@NT!e| zdw5~NzblaA|2Nht|8wc`?;`2(zpI&lQFjgtTMpsxe^G_67GJ7yuw~RbR`x8js?WI1 zyOYL-eEYWCtxGW-E~VWe&1GnL!je(1X@pTr*a!0o8`|_4d6z<7@xIYbn&N7weQH(H z!^E}o@Ha9-HH~Vz8J+&SKq=Vz2Lf}4?%cc-HgL%(COm=T>?#Z`9c*nZF;~<|@wd_S zt27vR8W~jF?W}3)6$n}u9Dp?6?K}4cus7f#(TJ0f_!XwXLg7Akqc;=k68PfPl#Zy`Yb9v#~Qbu-=7M@sG zy&6iYaO0nKMbW6+72)cY4QK5=FzdAkysH|Q#x@15G_wq|YhN9oW#>P1S}6 z7S7XUkZ-tPJff1k(N{GiTZ5tm)%L7Zg#EFsA7${#y4R7)*zK zoyTQv9Ejoq%k4dP*Aw&#l=|dSt&nQndm74XcB@b`sFz1Ht#@Ymr)?&Df6ljVQIQq= zDb%_8%7|RCpV#AF3r*Am&Jh-FkEqK4Y!@RaP*nRf}5AY2u z%4~0S0)lnChq60R+iQLXl9D5{N?3`}y(3oDqjXfCp&3epRSV+awrfQij&b)J-i(sv zQ>}yFNb!RIirNj2S`KF*9pm3$V}d*ITq43;QT677GGf*~2ZFhwu0qLjF`n*HlZ8r+ z>Q^DG>}wNk69JEUU)MfyT-$6K>HVf$YHl%yB7y5L1h&B|b!qSRHIWj%AWsbc^8E@i z-7XnqK}jX2yATF~aGDC)z0$rgL$qUPy65TABrJAd_FLpjV5n=>gkL?;zN!We3QJ77 zn}s5R<9F2ug1@NJ#{U|$kT~;w{}f7qk?v;V^oF(kN`O^dq<|Nu1((%=EO`%b6nFOH^jiOTz)%_gx2sg~<*(na(`;3+ZpD`R)!BC?Kg34wD(kdQbN(M%N7E`ho2Q zoxC?VOym<1*u&fRfP97gFMC!4CO}5^rb`<43@S4ZJYqLz#XBRLM|tZ=u7l_hWgudz z`C7&fxt#yu)QX@RhDP6h$T*VlVmcKYf_r(i8tMI<{rKKgL-P~fa*Q&5a4Byq_3Yqn zzK((_hQ{fJ>9q(WyogW&R%pnW5%xoHsOmbj0aZPZ_8AXI!sH_F0+9w@1ln-za;Tix z{)bDQ?RI^};R1ZAG-bk=BRAk98jxW&LuZ+tcNJz>)V60S6RTT*T8f09^W0cZ>{L5V>&2doxpQB1Wgww3I?40 zI*id@!fS0w^_XoF88HLTPIt8AhV1wuaZ1?N^TBR9PoXOX%Q$1RKX>i&mo$5B_o?P1w1GfvS>frDFVzE@kHkD^9d+ro$xXi&=TNPNgTc zW0SMCLK)07ejRMrY*_rZ`h{n)ze^4FDvC%UCl!_o`oXB>kUu#M{hDBxO@~QXm%Zj^BzP$=3dQ0yo^N(nM+X)4FDV5PuELWWd4Yi;DR{TbPtDr|}0Ef=$ zXqjRze#%6NBGjUC^HA?;k~8bj$vH=fX#SpHYdan)osZ*!k<{FJVl$+y5uOnZs%zSV zNPNuMjc)QK$W6vLZUzxTRIKRbzP=t+v*iW{n|AFo2d-5PC#cZ0vVDy*3z=JsoMmz; z570Qmuin|eLX`EEe=UY}s`)7{Mh!UaOl8ev(1`Lq?JU2ou&X*vo-J;fctF%d;`DCDQ3M~|fE+57CTr&<^Y6^IE-IcfBNGbT$H z+^LEvekq#ny}M_mfINFTF}7DO#g%`V$zVLSx* z;(erBorLAPCu6wgxif`pT3L}K>09Rn7Nb!2d%S*am)AvupLvr^^Cq0UYWtc%A5Tkt z?H!$O5GzYo9?kcpvEudOS4BJ8U*^G!e7&q-*27Dun}D6WPGF;-Dxez@wF$e%BuS3s z2|a`$oQPsKGcZZD8B1{(*dBeN)EX0kNL8;X^RFG*bkteShE!}B_7kF0YFh>#YmM6^ zZ?~u5%kIs58Q+V8WLDjUltFStd2VBOFGqZmMK!)Gosw>gkdGqYAc<*8gshZo*gz|( zRSt=N31=_5bXzmf+)HuF}%cJFb0o-$w80$bm1WT zbR?QIJ@LX3lfK_`7CjI;j{iJRj!IDw!oTO9`@;*P*(m0Jbk}>`*{gX_9aQ-%t<-6) zft~HV0c)u}R&3eld~iQigT&DoNsrUr8LGIt%nHdrnXPS<-f;@Aa$twEH|xhFbSgUr znMHh|%#?sTPo~8zZzCZB4DZNJv8CF{Qnzt=^>0uLwbjVpzV%JB^G>)cH@qH;s%rcc z+3w>^TR&}NA8z?TI~*|U<@f7RW-Y?Lk1KEFuDFI;MNHmpwWBwL%NQD#XZGg=5L~gUw$POBx4h@8 zZHc#p6gZUk$45(>423--{{ks(i^(y54rI`AjRoHHO~+-M(r{5^!M!b-7~8gnKk3Ml zxb@NFH@x+$c8%u1cX-D`HtMRR@k@Lu!`}#yN_&|ki`8<++?~za)QI|fZ@|AmKhJh- z;^lzq`Hf`{zY(^^R_Mp%qYwOkiW(n6wM#3}j9ByP$vJBt{YJjJCI1w3wis{vBNv}uJCCmD4M?O;wkp~#{L7GXE!iYN6 zUISDyHhR{v|JOwe>({$07zOGj>E?rV?@Yw~X^4C89zlTY7G%-E8vdqW_-a1-}*($FWX1P#6SjuBgUPSpCu&*{gK)yp?) z2yDrQZ^kf7c}+K(Fd=I_6p*gC+rx9)shTx9RNAh_1$c1sJ(`{OeufHIiOIwH z64kP`mlUT$hCiu#V_7+$>Gg$Gv7^$;b}$}7$RSm@jv}k780e1$ zUw77G=1rO3F-54wHH?9@=J_D3SdA6yFh$BXv*&R^SmzaqfpBZP(Ayugz&0G4Hy1T$ zitAOE{rfF?3FWQO2f?jyrId= z_!3Oo-aaFT0?MOBZa7gs(J=S53XLeSox-=U7sV*6|bNt56 zk7^hlxr2AZQUGdSD%uS)8v6*x0vO&JyIZ2+xE&rZo~2bMd+Q6sSAI>W=v5-*7JmqX zn`9)cn}PKp8|!y4h9$CU;4d6MBAwf7>ZNJot7(Z!$ke%rPLQAAV!bxdiGDv-#U{hV zGV2)itxajoCNRgm7Uu^Q5P;2DDanoGXQ!}cP^P-uuhz$p$^cxdSO-}2!d z;KO~99A-OPk=@;qtJpy=Cl>znN#X9wBKix=K!Xx1U8vPLjIGdDzUF)C5` zhR0Q{9oTtvlPk=6Y9f}gvtk?ZF!ZWTvxmnV3KDX%Y%MgYcIPsr)>cMpqOV|j@y#y# z%7h-);eExgh9_?0#ETb_OBQJTf}OLU_#i(hI#vwD6}Lv`xqkU=x!cAM+8JJ-0;p$A80ufJC=H7Rs&93z!+V6@I@J?B<~n1;NE&#>MMkL%>Eow8vI3&P7%-3ZlivmJpFV|EXV8yn|R}sEP+2RUSnGSz=P8oD+ z79Ne~);4=Besiwk-0c*JDvt(fa$0eqM^CO+xN%!{Cmst@6dheo9flOtj^}T;_To?v z{G)^KB-kTI&(HLhM?{omYhfC);1dhAVbk@|h`GIyJu7TI^=+w>6hL7&5NFvft0l5&^s&JOKRz8z?}Mbs^O-W6zQ~z9p>ux65uP5T?={aX#CxdF-~vIj?!pqUwAXn5e+VB*qM%McY4zgcyCNJCn}sy z3;!&!W?HmQojXodSrP|~+eyv1&A}~Z`0ScrzWVw!Sq%<(LTrPp0mgoYej$GwZ=xxQ z1G1P-{$mTwWjW1i4^M}*`sT&$2madW;SQem>!`H4G3k2MHYI1^a-N%Vh&yb8D~JAF zSTQ6fwb(JQDKZ26b%LYd!`~E&+1qgkJm5guEyn7HLu_yhO}foJJ6muu&OC$s%CB5< zr|(AXfI`okG>vX+4c)xKGC;!ZrMkH)mFjibX!L&L~mY-^w6vh>v8s z@9%7nz!b-Kz}C~Ye2;ta5!$&PP~=S8u-0;J5WjbBn4V28Hg}Qq>zk(3Zhxq~Mf2xD zNTMFpV{Y^&?8ig7==WD2t60#oVw_|nS4V$gr(hk7e!&>;spD)Xb@n;Fu@1k^)jUN& zA=a{OOsk^XnzJR4#POeIQTY=w8y?#eQ>5N1hkpEF$cN?aZdjG5WqA$kC5P`q9D5U! zuq}WSRh=3VIce_zaD=Gj7rURBaHBkbV|CRVYcB!x@#yQvI#r49iS(8A6g|WfvaV5H z9_$Zv8}Ya$zq)YphnYp=xL3a#UwVGh2i}IXYLB}64A0i?Oaqz0zPS+^otUHY8;SQr z)ZfCC@Us<4HbPcCSEJ-N+Sc|j8jY z7Q^)iSxM&M(2(5Mst_gUR-uNMqtQtE{bgT*Fo=iT(9X2*Qw9 z{U&09IaocpAFD9@vfUoMx~(MHfmO0>jg9;{7SyI_9M0b_8@(5{yh|?S&eOaPPD-&@ zwQ=Wd#zcl$l1}W5v3F^Nl-E(-WwjatwRSjE>;V497b?g!v9I3M6ou$4kSA%`ywd(X zhGHG~a7DIXP_KISLKOZ;0kgsIOov1jR(67R**7g^9)G1U5cd%G=xOT4lpW|V-Bs6W zt?qT8jaikVVp zryrP~^pXC9*MmP35&`6l!3fLnkjCKTFs2yIzkFXQ$1VA7W}7t5Z@Cl7icS{fP-;1s z&%qN0nn=+MfZRcy_;TyUvV!}p^SK`Y!S{ZOXl6!dXdOw3kR6Oq?Pp|1wJrcxJ@r-- ziw+h27kjx+5riP!Ro&MLrL}xgpU9h12;o05)CK3KcvHhFbxc;BR>}+iJ#>T-d*Pm@* zsN|Du$IeUr_XNDylY@O`(|-#&?37W0tfP^K@c&H4gRg7{ulzJyTH;34y0BtG6d3rQLf*(fYN3aiAgF56XeviF1P1gMyIRi@!y9 ze$8`#;!ZQV-uJ=D!WT^ANy_2hDX<=;dH5*Bucc^N(;TMp&?DYM?6c+gxc?sO{C5EV z57{c6D}vixCH{=3=nwvd8!2~AE^3=nrwRtEMYu-ikdYKdEt9e z_~H3UZMK77e)0%&fv*nLtJE_gfAe!#!>p2yr>w#NbR_u9&`mCPz(ftn&i=cxji|YI z!Gr~8cX>sW>+w(jrIYl(>6G28jf$ytcgqOBG4o}0eM_2e1ljn0@kxI1$b!0?|7@)r z?{2Sja3U9r4AKc&96Bg`@6oVL_10$FJ?@O0*I&iT&XQ~9kD|oNEZXv$!$ov@aR~cr zYx3|W$xq{zKMde^x%hb?^xK`&i0#AVs@&U6w3tnDkMflKCqBRCgy{XXRXa4g z{OIS_Y4Gin6MNen$@Fnii6EG^bJ6WNN7AWN*GtktE?PLPz>046RWrehc4mPO4ES%G za^B#;*79^q&Rt=?X=oO;Wfc@K-d$_A zP%s+SOBt{CrT-i*SnKWU-*E;d_{D5Fx}B)F$j!|`96%S)Pmv9p_HZUmeUK_n z(a=b1!0dw<)s&d~1s$MR^V!va#wZ4;)}eKTm*a}^_slSgx&;%D7^;=0TF2l5GkPqlH3#Y@AJIh`@GM0zw+L7*F9^wB+2Z3&Y3-X_UxJ8 z%o~9`_s0m?)c~YCy>K)ow9D7;fQQx?`_hUgB!Tq+d9%Yg1iB_UNq@nq(X*NWD(b zs1`FvWBUV%vCY`Nm17-iDTi{8Xj-F2?!j}Xmut^EH(r&!-S)lVdRcwF0k2-kP;P=r zQI=Ae?NpV8q1Lx`NKm>aB!~EQlECY*l-Rjk8;%XG|m!Mo~>_{6}L!th?|bAoCDNL{`BVIoy*y-uOXkns#YlX8T;7wN9EK zmsaK(n#tw1OwkiIjhFM=>tqT%{9m+o)ej9c zRBCNkEmK;%toK*O=nNa;*ZSd5|1sLjK-6c3mYFqy$7NiPWjAiZlnSklZZrrq0g?3W z3An3*nL_wkQ{O-lr;yfLgHQ_S54@o0%E&tuCSIcND|YQ%o^@A}hfQ~?l?Y~#k=v>V zgWY*^iK=mr0fIZ{b5=}8Z~%ZmOK^cFy!-jbFa2 zEbSDCQakZaGsH3Lr5YfAWy%>op+ii}>U<0PPT%9|vT|f`#7k2+M9|BSOe#TTf3IJ% zKdC6@iG`(4N6SY3p5A+5y$|9yp~D4o;a8o#ON47(76x$V#2o~N)b@6s^bIpKq8mZB z->C*sUez?}O&dm6kzXO|5Fj1C9k%ns7C?Yq>o+cH;yibQ@3E$;cafwX{Q0&)IGrr7 zth#Q-`xfCrmg2Ay#dT=AQPn}JeI{B%q5p*O$kT9?ql){Y-3O`<%-OZrLJQ-PfU;j| z$F4DRD3yU&2RGBt#B%h_5S-D}H_H!? z&Nh4DRyF($7oKO(y#$i0>kfAW~_xscG~XZ-@LQ23s}Z=mAda9dOLba?mNJ%M+uOMe7o10Vx>W={n4NHjPxH zsN|E46D(t$4N#cY;<~dcs#G1VZDere(=X-d2`ER&vnwOau_D`@xdY)ZhpjSf+lSss zifc)(xd=2lAp}^EclGBgjn5#>zN5SH_{u{mGgXSy+U!)G`fNivv+ADo9eQ>}rk2>y zoNHsqYH`^t%uh#MXd~h=qBbKRw^r-s{16bmkn%QyVFaV##FuyM<3+l>TsNV}7&-jT zXe`RF*`G*I#bER0@P)p}k+8}1% zWDeEo>K9vgf$&d+{SPu*7h0EgJw6(Tp+@?}V7uJonXN5Io0zheCX}^aG;z;`#jW+t zu;ii9!kFU{xN+;8_Re%$f~|ha2}!9IyUvd4mmHEWzQ}eLJ+jLGq=HmbRDl_2XnGdt zU|ad05Pb2An+&+3eoYxXMt^6ujSHO@e6k_#L>2rxFbWNB`l@?KZ`kf7*Z?vytd`a%?|ySZJ2wxrvWzS?UH-8Z>q+gZM^ zYYxUUrM(v^cwSruF{=HmAHH4g|5S;xE6=%yC%-@`jCz0;1j3y5oL!xq>`7~i2FY#A z)c-&gmrrah_Vxy~C`Vi_G^%sta@$+@^5u&vX0eI2cBWSE-hS~_icsGN)@{AhxyEN? zVP~a2AELeO*7`>h&M3LT_U;#?9L~@QsA-m#p<+2pr|QSkcE3y|=OjYQ+^nOT)hN^b z6ew!}rLfAlQgp~V8tKzy+kPmE{K$OMa6L_LEUe}*SRhqMl}Sd2E{$1b%zVyF<57p0 zR(gC0cAlz7EODWPPRGj-Y*>o+nW;sFfxI>MbWyT1x(S2>2L7Y%4;zGXvuSrD!Z15- z{h^0Z**R^k`v@4r)AV(@+J~l+Eu&4hx*FI_@z9vPqkEu9{V>@^^6=z+xl?IP6#DV` z()o)fAE)&_+EOHowsH075hTWg{{@<~*Jb;eEXysz<-cq)^9V%nDQsuTJ<2>@t+ST#p{w?aH z#l^Cru{olWX_u?59zQ)LC1qN`&kjmK9dmPYuL>)rj`_|oyRYv#B)vsGB9LsSy*k_9 zULcp^;88v^ZPA7fQ=P%QOi%aQa)W%ZYwZoIwK*7-8}~>znQ!ZQs>p>6e_DQKyDn+@ zvK>5MaOL1&L%JBXReWV9%2_q_;1yv7fY96;vQ#Hm~PO~(8$2tjb=!4 zGfvM>+;}M21-ajOvv<^>ROhbLky~!`lNd@n8cG@`{;ks?puQ-KB^Js+u0FYkFKmkRMB0UcI@3K>3;hnu&hmTpn09E z5!sN`3z#SB+q0bl6Ux}x!Y8Ww8f1RYJrw%IlbwSaSP6c^F>7$@U&kg-MyBYMe<`SQxz6mg(78s?#*g_o@7HVC5%Pg{$`1$eDA ze(<9H@bXz1Y(C`ar#iV&Q$iZQXIA*gY*&#&>c@_cFvSqDsefM+X2>Sq}GY+*>!%k28`}uzDzCiH9mZINmT9PCCO~jmGpDij|Wkbi*KzC&qW=? z=gIsfSUOB*vp$9-s4gcD+O*}boUS?T;$`~7E}vyJzTkRkS~jlO0b)x@9`(016CvSv zSe-pPQ8rf;c&a`fq{%QB#i?0q?9>`p+QuXYPO4Qf2!8t|EkhFgrvsL5Rpoc5F=C*n zXAV}q`;l76+;jH59X;30R-KFyddYvm7c`mVo-VXh%Ete{n5*7cQW)t z0++{WFU7Bo%p{4$#hUxLkJbkSzZ@@*X>)tnwsca)Gluz+SPzb5sh<~7r#g|z6ah*s zia1PE@|x1(_dj$|Gi}X(lIWV9(_>uoWUw`@{FKEL`wT~1xBSMfi&fuoE6idS#6X*Y z<0(7K{!TiM{NnEgkWCNEiQw3Hgx!hSaCle3F8K`BQ^^5By31*L;~3`G8y^DveZ`ZX zWKFcT=~Y+Fysj`#9Z<()Ux!HX-W_m(bo`U!#C=1Ow<{kzR+^AcJ1ufb*|c<|cbh_2 z$CC3#PTZaP>QI`M>^Sw!m(xoh=y^Qgj-`eTD!p}0Shm)*vIeu)XZ2jPe}8}wwoeq3uFzr36xK;9LVtEw+E1N}AEd@_SwDYG_a(g2WU9`DERw!DUS4N#jVo^_)2zSR zdw>z|heCrL%)v82DOKPay7tH6`+tOA^ zMfL7q8`qlVCUk?Qn_P~il`J5hqd*~xikw(&9U<)Z^#F1bC?w=K48t^+*TpXuW`4eW zVJOJIsr3f;%wBl9_fK|6A-5ZvzBuUIo4##xZ0VtYQ8BK5@K$;9ic%>eCCMFkiHl&)-~)BS*25jwn5yfUG# z5W?b917|sNEG%S(?>VU`@FBq_Cuk_qIiDZW{^rnSE^gzP;?Q7|*^1lN*+vcQzsTi# zM?NZ;smAO!&KCvxDJcp{4a&k~>zwcLbbmcXQ~cw#wq}+Jm)lE~zZw1Us}cPK2bp~{ zP&cl;EPoo!c-aQx{!aTz)m=mbb;WPGNSpddMATY}8N64*m z`Olf>nY)d@J~80?i!d|S=AA;8q)BFzzw{IK_qoPC5jr!H59b)Cc1HUt54HN%E z@W(dkPtZl@xS}bkuYV_J{|Mv!nKl1g<*dAxaI9Z2TQrz*W|8rJmJ926xlOy2ZK%x6 z$*EX+gMH?GtP)ALdP z=uP)fo*Hu$ld#^N+|RcogVMeHRFHhA!(#L}6&6I$Br4Hh+g71*zXq9J!Hjk)_Oo+B z^!L-1;ZtP zjQH)waZLD#{U0~DT1-Hcb;WY3y$qHASt|xDy}&5&Y$aZd^h~xz3vKxDnAfjgu-Yv^ z(jgZ-ju-d<|I;A~^d*_M0q10zq}$8^r=#lp=c5cGSNq?c+@|4n{Nv&HJ#Pl$IHj8stG#&!shCT*fO&`ocWM1Hs zxu&FatW`hBz3O1IUCSIoyc{|kBsTOD{-#0_JyFUF>Zr-RuJG{1nIeL?#e)@#PFblj z4z`jWaqA15DE}9t-J5Mf{sW!-d^i6vD!cmv1;ps$bimKQ6cq)XC_7&`7(dXw^enK5 z2!iZr#fAn4(o&d_#^WU9$mvbS)(Z+s^5Z}}5vb--AoNPnN#3)H|GXVINRipL`Cuu< z@!_@#&;eB`aaM}?94e2a-CSwl`RP!A;}kzO+j#uDJ30P-0HD(SMb4}2H=%1=YcCyW z$%9|vTo0*~#nzy6{6I1)ZVuP+bM7)}S=?vizQ8^^5gbTO-g2Ju;w^g_C_lOOlP5Fp zmwH3ff

oo`<*xldNd@{cN-|?U^d{RKN+qjq3*2^-)=nuM(H2g!9{Ph~LdZTf7kc zNN}2};^0$MG~I0sVKjDqCpAu*apOY^{@h2d;>(U-TxCds@1q=Lvnv(+N6q5=HWa&% zwCO>_EQ2?P=1~T#K@YwW49{1bxHWZMsAsH=NnW{N z*;gHw1EIm~z^Kk4LSKnpd;I88u?X#z8=7l1=huVf0K#Zn8x zxdJFYg1}FneN~gCd;MxQ2b8m<$I+?Yqvn3E(jFM-o6Yqiy%@NaANQ)OiQ0{v0=;!D zQ<7hZ8*2Dn?6|8}fToG+sAc_l=K9I-U+9p4Ze`8a_bdI0epX~dx2LA2Hb@odfa1&% znY1U~Wn^HYb;|_?PiQjzGTAc=fqDX9(##5dzE!5Ar>7UCkeQ}JsU#BIa;k#Gkb;?Z zS_-6*Eb^8AM2FJ7d%;qqVPzX5wes@vGOTkTWrttsIY)?-cy?T zRKjsOq;~wH!@~!p3gN&~U`rw&uPEaI%I6Yh5od#D0|RIS={HI#TCUGSZAQ8yx zQTyz!IX?>cRt>*pA1yAn85-;=dY|n@^)db^@E&}D%{CG!jrJaJ@e6#(&+x-N^ibI~ z39GP`*q<HhcB?4c?ZZ@xEN6Zv1 z0VdJ2EYG9z)xp3Ql;>?o=ZTOVFN~){+LeKaYA+(z+Er0ewX|nZ(V<=F=n;m)wT95n ziBcov$Z_jyM8HZQjoC3@B(yFFyn6qQ;seff&hF}Td~j_<^*U;Xwv`_QnPMAhRRM>* z{cUReVZvNt8+-ZI8aewBCsi8sB=lU!dH(KUPKgM@jXETSWqnvZ-fiZPHq7isS zQoYBE>-T#?^`ya~N4M3vWl&*?C@-{}NC$$hN{Wa#!_2f3%9)0OIKWc-*H(vO4FORx zhLwu90B8R7yDj3JIu!wxb$d{Js9GV-L2L5u zMt7}f78M@V*(#vvVUYJ<-P6zCKI`V!O}2a zx@73iUq^?us6VpIL>SHq9{~JRyfb(ry z+WG}5hJwXodQFDoZqHC&mQYdxDvTX}siO>-M{3UjTZLr7iMXM3>OT6d-C3(T{`I^F z>9#k-zS%th)~HLDNGHw!xGqXkM_D11j1$G^3P==C;GguhJQzq)4d8SiR%W!>Ss8Y- zHMVwoW}abZ3Rb#L`kn0RBa)+whS?M(y#!dP?weX0S6*dR6pXP@I{a#ypy$9+;MN06o?={laxq(A<+&;D)Qtv^(M{Fi?i{@=8Du6XxX3r+@k z*e&K!bkQFFKzq)x^oB>3;W>S~CHx#v>i}8C%XRcb7|zfnT(lixQjbc&J&%!E?a9DD zk`a-DF%9l-uX}&bIcYT`*|;LuxC3*E!>FSt?^H)}K?{Z=F-bXLeLkirYVlb-BjoL( zKg)#7o^XHP9ri=H5jr|T_8_%)&+t+3V|?AN(}S^UJ5 zj8RFC5j&(y9XjNK@OPtp77pARO zeT7f*cK9mB;>J}Ri`8&>@7WFU_SlW^-ixu~Szr|8S*VbzPWQ&H=PEPvsxMdRS>3Yi zMZJlgW8kgUfwk3&U!Kqgr_rD`fK4cnP9g*uFIhw;y+Dz@0O6A+6 z)wzYF?ICOyO9`#m9C+NK6sF;go~Al4mGHVWp(D;IF_#$+Jy}@s5G@-qY5{&C6KgCu zViD9&J_{hhaH`iPO-R%-hRtJY2fj z@^h(5_4?rOhhC^d7@tGGo*6@czpFZ;C%tWRCG+Y0X@`nk3F8+r$R-7x< zZYk2SQer&dZ_kZuhsTuj%jm6*ECWN+HV6~@wm?`eVW#jaQg%!#<3oLjUibtgIY(%@ zseBVj?T<+LQ0T$x97ER%qh;S?-#auzVOj?HiVE6bFQElT_1mfGn@AcM1=JBIh{OyF zVy7uE=ScbpYJWOJ&0^D*CGBVZY#QDQU)6RuFa(@)7(pS|g@8>zPNbX&MZzrCnaGt&d+>WE8!NO)dJ2D{whqwZ`?qC5cUayx$L7nN2~D zr%%gQv&3U}a+qof1jPgkjZr&Cwxq*d(;dY%Y_bqqxdq!)O<&!~HG=JEuB zg~{GlZjZltvId+qOEVV%?Q{#WMy>^A3fC^zrh_`xX`n;OT4o&II7{M_BV4_6X|G?A z=6~8#E@TnPZ2FV@vSBW2r#;=#TG>vYm$*hyl?AFB${IVUGrB+>9Nv!{!Y>V7!`eK3 zQvYDvBcpt~SjtRz7Ro7Ypb% zronG1tg;_UE$VILM?lx#N8IW^d|rxpc{Wf1Uml5@yHjGEm$aIIx|6^0XtPsb+)X86 zwR*aYX+>W@x1sl8>-Q(dEuz}!lhfxnD3NIG<@FaBAK*x?vCVCLr#o)V@@PGJyGbTv zAo!urZ)k&39pEfQo3)-&M;6ZxgBh@`U&fkdoR@j0(qt9d=9i@A9i1>`vZKSQQtY}7 zVaRwWq-;1&&IGgCI@434T~s*g&>APzm$-(w%F&+6#%Ybb?DDc+T4g!I zW}t5xU{cd#3k!=|V3i{8@d;0kZkLnR43OFfDuPm`;Tx_kHMg_~N6R~-m`3E0Z%5h; z%UxA_=4Ex=_%>dR1}B-PelL9&F?x?uUfycl%39SVqGNENms=i5gKV6>E&X{^*GfKrNScmM zDs(%gT}*?2CREytZI#dH7aUI9wmZxoQ?9HcYzDV3yEl}d2Wsv*1WnC3%zRbtYwqt# z#(|xM{+LJmWBx(@ItY zdGb!5sm6Ja_dc$=1O=i;N)+a8CX}2;M^b_CGiHIAb>`cTGf;v!D@qP^qcY{-!kd}P z8Pvii*3rEzGhcC%wQ2}47?12kn&YKHRVgVA#8T&*>pY?^%18%2bFOg-s0emikzf)$ZPPkE%k#4bYa5k24ViTdBb{;o4iOd*++4t+;pdqtn;#7z%N4 zh??~Fr%$HImKcD1->!PiMk^<0h#IWs-xX%&rejvsAx=v}4G4+5kTxx8YJ;>c-}UK}tdW#sgi70~mPU5j8AX?7 ze2CZfZ^7l+F8P>R_kC-33_plsO3G1=xD@AZsLVU1+9zqzzaNp#)2yQ(vm?#rKYXJr zlF7t5?8jLN?=Nd~O*EX6j-v(8CxEuwtPD?y%JBs$XG=cG!xxGe--$_QeEqV~MBf+wz z(PvFQel3+9^RR0`+f944mJ1mXzc;x2z?*X8#p`%vXiGKi^?S8*g{)}G&MS|cMelTu ztmf-Fe9&@UFGl43SUH0EXBDr9SG}`SzY;5W_n74i-ZInvNgHmv@Yo((#G`5BZ_j*9 zW%^p1OAQ2P>?anw=d6eQG9Wff_^l0z{^n6*7$aqz*ljZYW=-)Z10pjJYjL~i6VFN9 z@OAK6JC_bQv`qEe`GQRsXj~T<`6%^hC-N|OMWTYKTbOlr=qz@UeRlS>N};M;&UcxSfwf#;#B@cq(Kqa@%Yc|E zZarf)Y2C`E#|eo(Z<}(tUu`7uU0@+N9PBuPJZI{%+grDho|~Qia5{dOyfL7qN5M1o&&*T(g9mZ;E5lqQIQ!p`ze3 zY^r6Ww#jbvmqiafM+&LgAr0dAqZops-j?2}j*W;}5%Uz;{R5|+sYy9hLPD@#FV8DQkt^6XFUkj+lUqLq@e!7_4G&`l zAHR3+8&Q%oC>0XKD}qlBkGF*%@3t}vhp|`ql|~L4abtozXl4iTYG4P0acDfe(Wsvt z0t80Ss7m`cd-MBbAB`~Q6ORTg8IHI4?eY<|I)1dZc*tWz`AL{@(litbGw7j|b2`|MXhJ+b? z@tGqv<4LKBwBHGbpY%12=%?TQl#8g92ok@2;kEJh&X{(FopRP#sdhz?Cm)*nbo zKshH31%L$6H+h*Xd|Hw(PBr(A2h^?P(%OQM6>yL!>5^wqyGoCvByTy%bh%cemME90 z5kHM)jkk5`_Aad>X%o_QM4<{_D7v1NAkJrBAl#i==(r?gH^AF?K=dolXnj|FNh-&o zBzv9x7j=N@G0-Qrg8z)RH`F8lsJPd~R=XLi4Y_TVTQ#PVKqZlxZ!%XftB=f9>E3&h zaqRB{yq?8hgE~0%p~@iXL*foD{wDHha?jOFrH&N10xtQ63MvZ9_#-(PtY7r*hD?dM zvdxMICwfEc;l{IHBxJ3xfKzZeoqyOl$Y>U+F9B`w zA2mjA=1}_0%b;5>`2kD3WokbjX7D{BUKAi{6_oZb1x?Xg2CL;Dr=><|ClnITGmiN~ z{~EIZxOQ3zK&7~fE7cch80Qh#pJ@_@-)kiRV@Z2qrtdeZ>3@ew{hvK>e~<|Oe}WVK zS8J`e$CGSwANNhjgKx*8l0j(RYPtT zCa$)0rm``M&v#E?AH=df}j#|RXXq8kHFbypb69py>oJ{#_! zTjhg+0~Pft;g@v*Z*3Og90)7t+0pQ~hqZ(4`%NLw$-Q=%6|MBz;kO0h^Q^lvq$w)% zho^tk{-25ZKj(ctK9v67BSt`;Ek1jCs;a67n&Yp|P^Q9wpcV-;!bIZ+Jnesl8F_>U ziQ4LT$xC?eSl2=CFw=UUW4G8@gk*WuL5ew)sa&hTrK;S=hA*!os9i)K3ZtaX}c;vOj=&mE1;7lb+!d8+CKSAqG$bmovL zZwIQxsIJWSJUl*>gzmY5CC-O|s0#sfMJdJlb2x8Ynf3!b4dBTFf}1=vbro;_5e~d6 z%)R5FY<;RDmYlq$ng2p(joUHyrICQZIX3NwK6$XhJLYJwNNPSo%)>F!PAA?S66O`=uCCm=%bYdMv20dVRL3gg=|a*0h`5KBWXm0SQ-w)$ptj z4mq9_0sikc*gNilgM;IZ(~ZlhZUkzYpHlSce82R$teT2)-Gjnf{lCDk*fxs`l8;}mQ<7hi@r(&7@>qa0>%u>exm^2Y+ub!t!xrS@=P5uE)IsPoat?&nx^7{*U&DQ~61_wQ0MfyO? z$QwNUKLnt31F4v7~g&A#RBRkZ4rxl-;>71J~DNVDN8sfLK zh^#-$%QLFkYhL-zO#uZ-j}`wBKu-HUH8#~(Rye;IbC-+jYs&IXNSiF?kd-2cr4Bf= zD)@!H;&l};C&2rmx!?|kjV}iJ552_9^fRQw+M`qCANcQ+vU>T(qZxSh#&+x%mi9OI&S~&>YjAS`yTVVOxacPWHY|6s`L+Xp1z#Jt<+!|r zVISnAr?|^{x0b5=8z+hC8yi5CpYC1cTC7vwo5AHTTTNaV|AAM(+o2ArM_2i?hqpWu zNTWoW!7doGY;IYLlaW1tK}%sL4;zo+Wun+#4zleL{(1J0ulWeOyh0uH;XL5Mt5N1I zx%lCY2TMl&6Rk^)u~y%xCNw9V>z&gX$b&wRust=)AH`$M8!V4DYl6B)K8bmceeHTO z*RV74XrXy~Ai|^V5ZNUI;exeW^u~7qAQ=4_;rf>8-TRdy6)kwES=Y!WlkEZ#z?<;1 zwE8S1SzX?{@Qj6#|7&2ybl6p9;`lh@Lff=|>p2(hlJQMoZEvx-Zx*#$zRjR#+kIna z?0G%ygM$klfwbg>RF*q{DFNw^?6`%BVG5b5cV1AfrZ}{zhUsZShRvITgetz(AMJB@fXZ zGtH_{q7J=Fuby-#7dBiWO&xF4;344cLg=#xem((dG*O+2#;OE$R1e^`9uY2H19m}H@%rtL zKde2+b@e|`s|>W$hBj_ldqRQMnun=56>orljj1`Mjb}Udi5-lsn#pF92p7iPC3DV$ z?}`V~Z;ZcIv${;K(RBN}9pFuk2S}SHV>*iBFVW_10QW^{yZu`yA5!~zxtlrtND4o2 z+q!$v=Y~qhk+TYA$iW1N@u3i*xEDi2T>=oBnRbe13{zSq0ssTf_UvOK3=*vXf5xR* zZ**x`*=Jwrt;nux?AxXJLRC_~Z>R`Z6R!PtDFUzahtk%1cJE+6 zXcUnY11P>1BEWn8SllK{|DyYL8}?)BwahyjVcB;sH{3syRYw(Z*WzY3oyDAlm$u?w!Ka_N#2tP>qt+Jtx!rQpB(LsYl=0^ zuhUl)`}O)Sg#eGtO0uSbvO9h8BksboEHOez2Oaom6ch|R;7YPm4C(%4S;sp=+GBWY zz`b7urh*j%RKMsy8mOB^6~h6l0Cw^aGKQaH+8Q6q^kxuW68=0^7Hy{D%Wp=N=E{{5 zE`lvP?@3BRzU?B#iCf%*+VBnY``0m{{Pq9BmMH5{L2U8&(q+yi=V;u_ZQ$NJrfv6nE}}u0#@1w+Sc6zO4jz+)8%e*zxpT&~|P=!#HJD z63`sAT|0n~cJe9e-7n``@P95u;4KCpVF-g_3jkI>`ujg=@ko7jlc4!qpNa$(Y&U@3jf^z z+FAph@g#~?{`lIGyJ+vN3dVm>}rOCMM#6 z7Zu?@R4uVlr!1FddQ|4gCe}9LCl@prz(kzlMS!=JA{Mq5jowH_ckf%VS%-%%qO*Bo zvP`C!)$BlTLRq?OJyaK5pNcRPvn0nG)AcfsDjp;X+@(!v^XkvqyZ5y`zAF`x&ey`V zeV7aG8*C843+ylD43CU^$|lY_QR*xAwnLAOdg^`KQ9Efscz*mQ{ch|-eTdXXioSjc zHb}p=t0<%HGr_z@s-GC=erfO^Wq%WQZUHuz%o1MeT<3pe8k@6f=h4lsvQgjK%9HNt?%kId7e9BG z*O5R-Fz>cmrxDt}5VtwE^)t%(YsZJp&y+r3jp&PzPy6}A_2@jTQFd-ZTQU2ta_^wH z@+fZ?D*URL5U1J{Yrh}^`dr=pg{9ZsrVdi{Xd{zJ)>uw>SAn^VY(u8Vk~rZfp?-eG z!5OAjj0k$3gim44F7&e;qk6<^1-Z^@A|{C2tOKyhFRlf5_&t$5#d9^GE7b?yMdvYR zkUZt__0@;rF`=d#a=X|MVU~E~mz_n{0{-?-m-z}t_@baDxV?B+;x_vGmVjlT>oluc zic0s)6dgjJtM5&N_9*qNKeRl(pwdbsy3rq@*LU%1{Y$QM`cU4wQS81_~-O173yOuksqH$U(Iy+$uDPVtC$ zw`e#vzV&Dn*USvo1utJH#j6#Y4>NSFl_Ex>ZKn9*jWuTJ;Fm$wN3$GZ{U_~w z@)j1#q6Fojg@f56nxeP6{Xg%w)pJbv5u+1L$~UuKSc+Dy%{pod+XajB2N^@!`VrsXA>Pcqk?2 zzcXu2s@L4+z+IwVJh`>4-V?+ht=op$ZwHkB5GTD}Pn%;DUf-A9ubDtFkiNVANyfxI zV7&U!d}PkAX=l zGFw{l>(uwa)9BKSVI*uVI$nqo1}O$bMm<7<2V3?&zuA8#eUt+wM6C}0>>pn*$D(2@ zcP5a|!&TBgXhQu#8kMsX%zd^&GG1Eb&XT{l%m)(QPIS&RG2F-sidnjBKN5{85Ex>5^{cips+G(6H_O z7LKJ>=p8)?W{71$IgE}Zt&E5e3$Qrj?&@dc%|h; z)w+cT8jhs+3lT)N&orO#CQ<1 z7-t^D_2nwT9xiw_dvT$f+Q+`Lx~q=~7rN;$vEXm*>8@RpB*wKA-|hFgfXU^16+Xp$ zyK;bOGM8Ma&@*i_BbAPEee$vzM3UU`(KA!ArR{Yb>`hpeNH@C9Q3LGjB!ag!?US%l z98*iDrP9c+9BGtER@cA;j!dFw2|;NKt^83<#{OEMg$Qh&gq@|g2K^j{iLPfN4EE85 zv%3r)kp#swNo*WWH1BpMgyojom|q=j+77je>dpYY?iEO9%GmT*=rRCnLrXf>x$QeVmb#)LV-@AB|gN)?d}uve7gG$n?bXRh|=^m_35fFDO@ykPr2 zbkOY%D+7w28-k9;(0Pxe^Af~>rR%E@ziGgA&d+f)n5aDehfC6Z1j7=Tf$E0ANKk_=t+Mn}Us1sO$ z)MqW@T#xoZ3mFSSyDh6$LwbGtd=Goe^X7Une1HyXkGJ-6{wq>4*P#4$xX@~6Q_iAk zZ8sfO8v(=kaKa+>Yhj@dr9$E@T#a?&E&4s_+dX;Kuaksw>JZm$4yTkV3*0Pcurcf4 zI$=lk*NxR9yM%Ic?Ck@mg+zmTsC{3)krU0}S+W2_HhSvQr8fEH|D(M#4QeXO;2q+*+VT&_i4H_CDBw=3?pQA=u0x508uq7fO&6bEP zf*@%jgbD#8U?Zy;5+&>q!k)mJ7nq)!<|9-23YO{Dq(#t27(p2&r<+EXvc|IEN^JWr{G4cHNXN^@ zD>K~i7-|q1=1JRRMW)$W_i2Taw0O^A%3NaF8~U26o_&nM_f&=o#0wcz7MlRP6i!7P zz92S6(&S=ItXD~)j9fo>Bc(qpR+cotf5gG_HZyw}Ph*m+ID%Yg8S$A*2nz* z%d$C|O{;4*=*q0J&C7T*v@*y~yfnPL+TKB5Igvz0te!At&ue@d+7pVwuD&ksKur<4 zT`|Q)As!x^!LnmR?IoP@jd4xvRAr3hA-w?|=H=u>W1wmkzY{!v408MI1S1cYDGjF; zMa2`wygJaqaiD7CAbvv$#QEApMgd;{W7ZQ|bXSBaLKr07jJy37TFzN!@1<(I2v3ow zao$%t1i~@`8So4=X7*;Gtwj{G=4dNfZYwVrp>;Afg*bykl<9=_h#m{g|2D{&vg&S? z(y1}$m(>#P?$NB6W(>e;y_bq|7U+zv@$y2SOMR~yOUcl1ML3uiD@OhN#BUC-h#QZZ zcOkn3?7DXQZRrZ-NxPn`JEQqaLi&vR$PDwllhx*ugcNsUF}=UPp(Q!!7}tbia9<4H z&&h_4FdURnjY4~_OCrcbg2#zwZCoOWyh&26>8st)wafq#D0SqyXRCN+@f}h-UNNlQ zYk)Fk`xAekql^CDc!^r3m3z3BqlXa6V16ib8?fKcjVt5?9{(n)HQrO%=rBD)%YehY z=zPxFYDMRq%lnVzJRT$7QwAk+jtZC+)b1Dij`oh%TrOQmdRfLj;0{=$=9S4L#0zNY z-PzeOOJD8L(?=>}Y8LCiEuD)Nw8izVhDje@PDq(VfcJyaH#nRuVSkF`ZoZxKNV8kQ zeHtj_rcv7sGb_Q-vNrU4F1Y~s;A^48xD}G>5sh5p9&q$-3$zH9L;yy z3cPBgOCbdu$vftAS5zDC+Kq~qRllm6P5tzzFqXfLKFq`7f=SU)L{n72>#?oU*0lR5 zd1c+0{-aL*3{E#;pFaUz&3F=DKm)ti(I!%W_;sc{XMNO)y+nz{U^l2j?75nO&w@VL zcy;fdX^3okeMx&p!q&&dBNYu?o43HZNVb=F;dVOmqrWh-pn!}?v!chto1bSBBb$%& z`xfXlky$q^^SiYDLC>x2012jMU8(_0WP6|Cz`+|B*3Gt}Fp*T7m*_tygAN%@$fK936;FuerrcS~;~hZZ=MCVI)~XMF`IQ;kbrhXWO5&IG0i_x8c|M z13@}*`8h{Utnjlr=6dJvK!{xNf_6&puiZajzp~zjcXdN({Gd;LhpvC2<$vJsKhg5v zdHR8!)3~7B(-y?6As*dKF5ncmk|plUpP9vRnGfZEpb5|a6uE)5i2ia)Jv0I`pl)6 zUnR<>2N&H=F0W@N&S~Ro*6>m(M^{9rw^SzX1Y8l%IENja*t33PMZ~8AONJdN!aYNw zNFYLy2y~KEG5g}UT=hj4{;f1Z)YhEwaWP{w;9Tzy|tA5?a$cY{7ZXF)jNBs zK^f0*sl!9-bb(?hLdp^8`#J7x{!Dt;do%FK$ziIJ@i(RK>2J6eIA%(6c+*-SUA#@E zsDkHWgxbM~r> zST6pb~CP$SiW;s0YB!pjyh5Q R=%M~~opts+%{~=;{coDC4sieg literal 0 HcmV?d00001 diff --git a/figures/monai_clearml_models.png b/figures/monai_clearml_models.png new file mode 100644 index 0000000000000000000000000000000000000000..c686b078eb7098425a0cc9632392467fc033ddb4 GIT binary patch literal 57683 zcmc$_Wl&sA*EWg-2*KSwxVsDzBtUQp?h@SHA;BGjdw}2$8Qk3^xC}D5yW4@}zMtp) z&W}^4zCZ7(n!RiG?p`f>N%y*Xg(}ENAicwX2LS{> zgg?9K9)J+EKYw`=Izf3W^1-i=0!L9n5)-qTzFho$qlwMM>~NwrC-)(EW}&vx`Y=&z z{>Y-trc6~cs4Y?FTq(IOg8a9b;wMxEOiaWE9vY|tnr}D0nU14~(1>r}hF!V0@sFl& z^Ikh{4W~1Y_0XC12bAo}AH6~QmtuieQeyv7w;$QR&(Wq0+haohC7F0G#L4gTL9ef4 zV~?NxmJk-+f@b)%paa{WmJWWsA%7u5c+r<@&YcfIVN3SnGCNqCU0w2p^=BODpw|{I z`7ydlf6MpS_B2qv7Hq_2dH-@RmQYnrpd8z|;-ZE)vHvap+Gc+MK;YGUs#D-H;+@vYJ6)bWYjo zy>!)M2JpS(AeV;0_dG9aPv||yx{jy1xMLqOWF3@$`}lW;#BY}2AM&%feiNr#o*eSv z$<&A(7+5wtOufr<)$Vy1r+1S{S*2TUDu88ggh=5ff3C!GD625+J;86@E|O6wIalGw zEp18Sx3rV@hsd&ddn+BpoGajWQm$0T5JQZbItc#bb~jt^IbsJ>8+ep$}%gHP53@dqy&=~f_*0%8OeyTgIBKFae-U#$H%hQtLRicd1{)+D`si(}* zjub+fUGEj0kDzwMMOlX#HR;EnI!ZN`&aGj-!^Ps8rSx;W2Xr3VwVj^9skd?C92I;& zqb7c*b>;PPWD&Y7|1|QTPnUijMOx$^5zn!#r_vZ{(bI&!$_)r!Z8&dVIEL~55# ziNQCjZf69Rr2v#SH(?LLYG|atXNW3$<6s8gI45Y4Ws5Zr`WXeKP8n7ciJiCW+A`|w zd10N8_=g%KI5dXSBkV2T^i@lRAi})$H1#i zes{IVeHE9fc;PfZ4!rnWEpcwoA1v=G*RlpfUp`W5pitVYq0;oDoVF3DHm30pd@VlG zmnHXlXJq+n{R+GG8GH`e`lVluq zHrocP4Qo5>5A&eELWOO}IjaR-68$<;K;*yjTh<=M!6yjo{HI>9kmH|wcA5aR64C!O zq?&(CZ;q;Ad*!-eAIEFw%KHAw7ya#D!zDu0>%H8bOuX>+g+Ce)_a6oMnuiD=&ct|? z?tLRH4&%=0UmF<va` z$pNy9PBiZ->UFSxXknoYgJr6Kd~5SdGN&)4Nef{(rZ+HA_)q26i}hcpXFdP`P9PWZ z6WCj}iVep~eK!9j4uX4Q^mJf%!($2mpW;qBd^YWsQql3xHa%woUyz^zFK;8@`yTXQ zbDPQ%Km4a$+3!=RAkHuSpen4Px*bLB+&s=;AW@KfieE$A!)klE_P-qr(aeK}K`c>h zwxv(>P4{22#GQ)yzmi={B8cKd@-FgYK;Sq1JK?A`ZiR(l^?kQ*1DNCh_IU}TG+6aYgu?H9X&|)!fQ#_#yEPg zXK_aVX^Tya|B}!IX$C#;ZWr&Exr<=HZ-0(f{j@NPDV0bJg139KUN zxRd3qEQN?Yp?&`&7=`|J!c+8PWF`rLYYF-{mda?Hqeup0;$Sk{A9Tz_;ma03e`dQ^ zD!^iA9rARD?83q!>Y(0)+lS!m!)Y;YiVuO}BA`92e|8mquo`BG^5db_SMwD1cW&sssH!Fvbw6bGSW4jXxbsMaaFw*x13 zj2n%kl!U>m7!xe}`_uM>>%^oye{tk8glm2Fap77B;jW*wghPz8u(Yj2?GYbhb=ijr zN?w!b7*E*Tin#C7Oo$r6Cp}eC7es>iWW<^|3PLSB?j$ZaP~~ziEa@Ynu|`4>r!Ar~ zMG}LFaXh;lQCTbN2zi|rvhYezwgS3Zk4R5V?j)^}{DA;3uZh{i`g+!G{W5iAh0u80 zE3%PB=FTGv^^xfq{NT+Y!M;JH`;%Q9IQxTA0a#>*;FcM#QZfK>Nuo{9;AQBXK3N-& z57E=z7>`(A*rl)DyR}T|S(AkLnXZKqQg;@<9v)p^i^DhZYDsH#F9O}HoxR(_RR?fcQpH(!H?UXaofK1$p=~JFepnMKAJVzOb zqWwO&(ollF(0*)aD`5Ju-&#?1ldE%Myf6GSp+Ud~1I%u408?@bnm*ksDwdDnWp9%)^H(M=$b2NJiouBvKZB)LUxO&2zV( z>Q<;VP+>nrZn|C4WOBU2KrU?w9gV(bK9ryqNp0*(u#P-KMj#=s8hGmabkzhV3Dt=j$|F_hFsn=JPd%< zsn8D|Sk$bHeu#1^x%3)7rOof~GhsR&x%jUKqSwIcr!6plfr?aD`-ViGA1!8V3&1^N zuQFEV(iRn|(l4&NQwtP?R6n^Fj06_ip|qz<_@k}qMs|->sb5-aDxqb0=8B@0?9wOv1%M`IlOo+^bqIHW&rO5sva z4^VG1=%nGMEZK|U>D@=jc8%$Cdmlt_R$0)M5JdU93d-3xU~s>_jcOUZdBo7d!R5dI z;$%(R+D5rrDl5Uwu$vxURdtl(PURreba0 z@ob>evW*eGINpWiebFGPmd_~e;lS(RZnn><7mb_fHQ?c5%_t;DM9cZX{EVqo=yNvz zKC_1j5i&=?Ig*7Zk`#U~`5pF)L*%YYGVaLMwfXd*AMi0@o@eMSc{c6o;`y`prsK*qqQc-^9LU<2IZPYe*R2f$k#hW;kJUb#c-?299l@DZaV*10&ejd%B2e}H60e>AHugdiY;2W1kqIK7FD zFk}d0yA!EKH+~=U{;tzMc~t25kIw-mf?IiiHs4+R4uhx-sKU&uNqD2mIOu`p>z|Che*pki1 zpZRZKK9cJ_74>&Of0g~AQGWF0|9?p4ocKnEQ>Ru^TAjmnkf z=%|3i3V12!Fo^tlMA|m1kQTkaCN-U7zD?~pB@?Cyy>~ZU0`(Kt8dbU9`4lAT~p{zT@mzd!(ya8 z;b{4Ca{oP0v`8$_opNMQn)?^U>dcP%+FMJU8=0uiGuNC-{RjlY)F$T{t`icBsLi2m z!)4>Pt+Cncda{dI(KTD0uSgRE*wES_xae*u$~j{$vE+}xQVkEkh9qTngyE3e>FJTW zs`2aItpnVQf`8v+_sSxeq@ZNKEwXm0(9xdt(TD*W(C19juX0Lhl~=uUkkH@$+K$#C zWj?4O57SkUkG^>I#Uka87ranrCG#pgOTG86np?Tt-&#XVhIwuby!jz7T&1Zp*X*>C z1@#rmw7xFKZXKBZcm{zka-<@SHRwEg6dF)w;k;>N*`|8Nkf?sZGKhMvHk7x(fb1(f zow~HQ)9q6x-#b!~@_?~>(Vb3)!D@TZ?$W}bv4enjRQTJ}=#)S!X8LPMm}|_qCKY%l zKW7eC7dTC3yk%9Y%LY^PjWF#%ah{$AH#~{o|0BEq1c=8Vftc3P$X0X0L`@ASvm48x zAv014)j&PiT|%TyP(pbqhM&9QgX-%y9iPQ_+wv(TZrlhVx$Mp5|uJ7 z<7e^Bp^eCjVJT`=T{N}8SoH#a+--!IFBWa5gO?;muMUNLPhm=bz9yN?Jf7|8HYzA1 zPg`0I#Z(!!9C_YHe~?v~bEAf~foFHV#o$vnbDcp(0k(Q6yFBbn$^y#)GRm04fxIHU z58ZjPfDv~slGONb+@F~7O3@~Z<9(vx==p~x@LgOu0UFrfEPKiB=CgO&IrVMjrEL3q z^|MQZ2tze`_Xddg&D_>KKh+k#ZBp}zOt3cxXCQogSkkBWJgIUNU5OQ)CQgXnB)jgz zSKifxW7ZpfUe9&oXlB-yoz@F+W8gYTifQ{^^!4OCwEv!m1K3|R}I&M@>;oh&tWxe`- z07f4B=5!$F@h&uY>_?3X{BN#4gWE>q_$xxXEui@Pgump?8o87-b53tBthc}(>{2>? zl+k6c%z>bn5@A7jzqDj$q7jaLo;(CG{2>xaML5_;C*a!8M)OP_RQO!+hWg*&-T6~Oa2%E9J(5FaH@b~_xLkZ_In zfEplEYvKya!`Y9A%_-M2KQC8}`MEd)c}~6vhWRjjl)c1qa=8xP$FpZRlZth{BR`@U z>V9#4#)CO+z1Eg2(bNaNEXN%Su)1=lXl)g!11qyf$6-IicQ&{Q$HYCloCW`8bz z#608=JdQR78*5;do_#+(rS6OMoJSVQ;)3^YT>MZ#XjEklx50c0s>T7`;qO!44kqBIGtu<=3f|&NL_hw>o0&iy6Su8*j&Z+N#klp6o=KK z6ort`o27T3=IP;@hf<)mnMC*b@GYlg{1t5`M?T;Y@pxpa7(d*-F(b5#?Tdzrn_VsY zm3hm1*YoBO0TS=X=pO!tC!wzHGbm-|fk+$C=qKmjBXu2K?phUh`r@+YAl;-d1vI{L z9};9r%r?9!@`M-4lZ@ws)+XJ^EI9JzCW6So?zdW}4+R_CeIq-Rx2Q8S$J4i|qJmKI z?(@!QNU`S20_|Xy74h0iWpV*pX5&y&tQk+T2J>O@xk;CO3 zb*MjC)N2mc=D(qRUi|ueG)bX%kXsfB~t{j^*TlVwLaDlnoFiK)bXdejo|y%o*5oDZaOIK~7y_UUxt54KK+T ze&m}h$C|7v5_{TmR{xbNw##BXTEdRD74Kh<0!EF~{Yp1qzUjSOxR4$SEjx_irjN8` z%T(gXgg6iOxMzWe8x37Iu=H<7TW8r$()=`&vvp`ow5?RN*7e@Yy&5VA{}g6%8hX-n zx+O7u{bkFLFR~GCDV~@~q?-^nXS8)M|95{CTdFvfXiO_+(F!24T%5G!Jx>lm#2xMR zu7*vHJut8Ts1j}4&7N+bR^h5+4NTwqo{<@{?REYxrA&Wc08<*^0Nm*P7PvKBFmbz< zhf~nr_Qb)h7>tOEKkst-Vd~(nqoXmN6rB3`eQL2iK4`;l&AMMf7ZT2NJ-Ag8s{Cq?ATHt{^O#1w46zg?1YP=5O-G`@EO5A zW6}%9&k4lgx3=5uoHTFI`~hUXYE-pZ#V_mZPwIkz9|JB_ui?*-5F6LAXG;8!rugy3 z=A5vIX=8)$>>TPd{S3Gaw`@DEYAvKkJ5a(C<-fLZEeJ*gy8W8i-^BFmc}{;rVjW+u z>_eVtTlisPiRxRRIGb5L9a>{>4yuK2^(EClsWonD9nQGI3;rM(u@e0=J^bXf`P=cV zO}FKK)OxZ;S`bo7or-#B^OVen%3}K|vc#JxyeYFLIAe_h8{)T4JmE%g)u%lj?ENjq z(ZcI}>vivCp7H5CG zF{Pj0zSw!Qi>E(d&hG}%)e#OfRcUhaPbpNDQrfPLU@(tCGP`} zoJmk4Zfh((FaGT5UI&+xxStFuN-EDrsewL=&W0i75{v+*Gr)apG&)f z(SO6Gq;rissFyd7Av@bSd4DztudPm8Hc~MGN|mcL;O0*4XbxwLgrgFjo23)I#xl@)&?YPj<7s=0!-91sTGlyAGe# zX3c1Y7+YG>Sv^96xy1kUS4_;w)1bYQs9%3A^)gtW<@4&)z#10y=GbY&SOR*}obkvHyFZ(58Mi zhec&DPhI=+F#-_t?@W>BEW$wt9ez+1O*}XxTAieZ@Ogyo=;-(aPkOa?hynn3QnuyN z0enY)pC$el7&*(M;iwJ<)^pk&%&SbUKa3?VCdh3+jFErSX^P z4w;r^5b^&J(TT$lYusA@p5p^?AKfT)!e2mOV3I3|)1I+E{q%JIsFa#60sHp!Hfnx} zxJm+URqMCkal0WtmN-hrTf-?Kc`lAnu0>MrlF~R$UK?q!*Kf z10A~sFg$YLq)tFMJ>#y2QP12B zU7h(nq6^H7>M4dYtLyW2k_r-vrFRysVK=nw9riMAQfyI@Vj~@9dUGii-T>)}v0enq zK}5At;9P>%B0&wJ*i)M)XaWxQK%TDKosr0{cL)A4UVrNcli{!Mv@@R|bOy{bdQvsl zTWy%B8ZvD@|6?UOyZJ66<)g#MiAH?myp8o=i6CtT^H=2YmFixUYf)qN=%}!?`DZ*= ze6#n%+GGKVN9e5OZ&SmbQGV^C{pjFd@1?`m5n}g$cAcE%;8eMpj0 zILT%7@L0&v*82wQEurNq&P`&A=mIyIPFEhcGT#A1Mv<|mZ4ZeDqY36rr>hU42N8|0 z4}RR(EHPK}VOec1gNB7^YMq-loPu!Wz6E z%{W|Lb)!x{a#HNAFqem+J2+S^j_m9pP%Oz5jbP)C#OVv?@a9)?I9z4tkW6`R6@XlR z>mD*gpL-~;D!S|-L&P@C*I~*Iv}g7DlHIi_O^rn3S}CEg=gISA_QAwIB)d2`7fC@Q z5H?%>e$=kEtb_8hQdboIY!njY;r62-jYk`XQfhBL%;FTj@>>xC{(U(vYa=yOI`9;m z4Hl`+%UemB>>pihykyaLD`DLrGdW@tqwSJvK21n%CM&~@k^*j!A|8JUF70ZXiXiBi zKo)2;_mA`VSRPE9~T8CAM%W{|dTLIh=-eE4XfOW$A?aYOG+#nCSPr&%Se(dmwjoCITt;+j;IS(1FCupU2Yo+l-^yd zI{jhh!x7gHYN}<%C?KD72`)e=#le<@G4PKae?i!1y8H|P05$D5FJ>uEv--0eA5H^x z^jfes!ll#xB#izt56Y?-Hka9_Na@ZeZGtyJ?zuJUE~SYJXc=Q%KbmWxgO(2?LmhB; z{6?{G?0+{Owx;ufwPrKa_?QsvtxvwYpsC5 za!KH69kaS4kS)nvs>H8WgsC3=oL!Sf@sL3@{t;O)YJ6Tbn^eLwrm`Ap#cHTS4KHc! z_ZalLmj$!(JQuh?4`=N?A&cS9K2GU3x@bfET1E)+ZGdTK-j&b~8I0xW7>g4PfFnF` z1VCyOTv8!#aNqIH>1ZCyztNJN8{;n|{-WtlfU0-+Y-<*pXL8o@3!PwBm)wm5yt#Qm z`^2ssqspa`JFVQa9hBOafFfuD7CT&B50g?ZRq5JuZX+on>j+$ie}pV&5lI@i7TS`& zy-W*5xw5jcQPVwvFeBYyabAvKKe@CFKzsi|)~NE|lTJ1gh%d#*h~)*s1?gQRjkH}^}Ws}A&)%+Zkhqu?y3@t6*ge>E|q3aQIQ z>1UhY;R<123i#cW)4|p|Sz}IPjcSFL69CSM(zsFs=B6=@jfB(FoSK93(zeW|un7OG zXm)CQ{$TZg*DxuSQf&WO&HUd0?*A7U{r^Ih|L#4}(KKT0--fR$V!DR1cK-}<@seTVNW&J7$qb>X*utkRbs7YGB z`Tg&R$#^<X&ITA^SJYhO9BtgtB}ehxI3Sn%aj249zH05>u5 z7JS2-+@+hAkO2r0V#3G)f$3kc=cys*G@~g^f#UgfPgaop;OhBPO)+LzYLRQk(F?FT~8 zv0DUWpN*l9y&=3jb*=nwWFj-)^7G=^VGe20B&HR~nli28w4<{|vQ^AAv~2qg)f#Gv zd=(l&J$DHZa_3><_qB1)k^);y3t;7 zk_A;@&CbCcW*%Ai92dGWn^hv--V!bmwBcJf<7gWZU5-i<%?Sf=Rjp!Wff3ECIFs+yZqmfQ<4imvi^^2#}F+dF@F%JzP|& z+KL#wvgYe~R!!HSS;cMilxHKxZ|rBI%p3T0hx3A>UjSi?$HAE&$IBbLOigxyWa1t&}Z zLMhsNALFMjoXnGw2EU9nwisF;Nu5cZr-d^w)R#RXKWLw^O;Dh9A=%%5o6l%R%y$^k zHE^;4-K+YPX0KbMm}zz2EgY>7d9Cw0_{8TM?!n(h-pOn`?1`5 zs&3XLJWtGq5#DHVx$n(lDsKf%A58_cv%NE8Y%nESzS2D>rmJdTjZL9rsFkqbAHr?FfBT|b zpv8f#332=pQ8kUV6YWvYaVaf3`syF|N(MgZXD4%2kW@Z!u3m<=uZ?}JYejQ6^wgb5 zylmDk!qqE}Y-7`n2tV|?XJl|ju3#-`g_$lLUM6KY7u6#z z)_bWbuaUgmy#A!^+(OKv1Pje`jn=+Y4*TfQC_qp~0YqEYEtp%`le~Wy{mM#CR4KeJ z`w_Q|Al?!O_Py1}he2R%#lSHF_mY50Q)cBWB1LQop<)KS*jv{Inq@>^w? zkWisAS^e^qzOxHn;~}lDYfx+qjN<(x{CN+$oP)B=wy3MhxYt_51bVC)^~*v7X3O6B zPqqaq6d6RE%`(?GgZ)BE?>o4z3mOdZQ)b)VI69p z&-5R!WEe(E#=1JlPrEF{NU5$}gFTO1lRcv859o(tJ+w0_KGn)CoE_*>9GhfV?J>2r zt_Mmo)rjkhvGm?IqfnC>WXXk%(3OXJ00VeMAq+e4(A* z#lbR07nM8NMijoW$zX^gCmV9&kEu~C6#h99NW;dMla3pAJ zd7-IiaNxP>%7h`MB%xb{hc?Lbetm5q^X&m-dO}C(R&}lFi>R9qd-L7=fW37$5pHgF z?B|#Z85)Ack;`O%Y_GK+uRWHtJgqlr9g!P!)3NsSvZ-zMHr#m^f!)P*+6rmkN|@2J ziX=7)aTnq}z)$wOr%(BlE2Qx)2{pB~Ha4PpguO;@#|@eg?F{4S`HqjF7IKKNtP0_i z6sUEZ1Y>^&5;E>9wZEUgr{6i)(L`Gn$6Y5S5-|9?#Sm~Eb{LsVvxTv^V#;uG;H0lW z{X;~<1MdB?==P|gX{!4~yhp@rgT38%xav3e$hz&682}TxJp>{7Q@r{%l3u4G;j3%+ zL=qF*UzW=iTGc2?G4Xa#iG#s7n|Na70wPD)Lpw}DS>E=xzSK*Klu6@UeFNa@i4m%+ zrovu)@8JG>CGHy}f{+2xjMXTqD!mu`#?%92U*Wmxk@_i}?nz>=cXP&Qu<|)!v)QX;OFY*kwQawuBXpy-S}fne!ty zBp<;1fF4C%@8t(EW4T8c3i3u|khmME*aMIBJd=;H>Vp0p=*hW6k~9CN+6}e(YjDAQ zwEXc`x2KdUH=Yj!wxSohcE;M(%_iv}TRE13C$A9&5L;Yf<=SeZQYT zWtN@ecxHQf8C6owOnyufVgLf3CKj@;I#ti1oMLSrF+I~&49YO~>Pov`u(xmf!ge#r5=Tm`SC%mw ztP~XSsM`rI)qqghd{~Hyk7ylizphVd`jns4ln9H9u%TCvft4bW9>hZ*k*@TNS< zF(#dy*-8v|{bEr<@1H8}yFQz@XsbG7>KV9RevCoxAG6Y^Y?!~EgS|E*`u1o%tt(*Y zlG$$F_2m@ux@Y4a&L~0yxP_cs{D!t*<2o_&3@)sf^ZCBBn)vN0P*p0d_h6)JUdq1Z z`Y1T~7)4AnZofsNyY&(~>(~VDaX7>%HI{m`DFga0%<_2Qmu2H<6;{@Bj6Oeqm8~_r zc-$7@5WoG%OnYk`+|eOpfxzr4;PhLrzyn_j%wz(oyQ!0-kaZ@sPiovDAc~ zxg*%26>C7f>6on%=DN4L=@+T7EEAhtC>&%K)5+=4H$Q+yjCV6q7jzlFAh!x1Ds?Tr zA_Bi=IAo*1 z*Z@56qt=Ba#<-5VPJ*7?f~>HCqSM3-X__#0)*)&x9;}))1oCybWpJ;v=ftPC_Gm1? z5j?lvqKq{qc|vICmk%? zLvuCjG|L{YD9h1fAI%ZUuWRt~cn~}>Dp3|0 z$Z-<&7Adkd4~x584a6Zk)SFy4v{GW+;w>&&RBq8pkKNIO{?swcRhjOZePEx3cIswoC@bc*rW;3WlK%Z)T}I0`iqM==(94F% z{G$6IlPK#CyqEz$JTTu@ghmjGDm@ClvT>73cQb zQe(G~DkS)JU<`s_1vXJ0Ys^;9`GN}(2F`a$Xo?soYIB`lTIFmXXfXHr-hIz>Z^p!( zB%Rfv85zWsV7Ry(G~t$Z*sVC6utr|8-jIkLNs4ep3;Oi1_W7!fAKyOQ< z+d4M>AOdIIWw$)6&;LAyTSXG-o6A{LwSttW-bAjyr0{T5l@4=K%J0(_i_w> z%F21c+o90ylQ7#MM zV(Nl|>~8c~3(`S+M56sMohcisn)#Ftg^xbnbTR)vPWTj`Q&EH8Pa`7Q&l@2&qhKD) zXR{fzYjdl6eQs>}vazP@;BYryPssUvQ~Xm=K6x4IeZS>P*GWzOA5ktJoJTc&s+%d4 z$^rPd4zW}0U0qQn_R-~Nrx5^MpX5q_+dr$Z*1GWg-)@84YK9<8+#W#QVJCJYS7+E~u@leu*|o>jNzj$f6uv*x z`7u{#yI0s+Nd8_MCou)MulDU=63jk5-BF6aC+k#p?<{?tEv+Ym{7cwe>QhGWW<-YP z$qXNmf{p;rH9+QoF^V!Ki+;>wk+7h*b;u^a<{o*q3`J=gB14D!CK9<9l-VBGd=6GO zyDoFY8IDS*XSPAT?s^6k`@DpqB#IvtGA4}z8K!>~zpei0S0izjh8AJAB~Uxz>BM9x zH0O_UJ(yz(2DDG&#IA!@KO22;DM^hoBLS|Mj#k>vU??E8G4BCf5lO<2U6ooLL7j>dPiAVZUOBx+U(ftD`W8U}>J(nz!?6 zgyTY$u|jsKhjk0E2Im?NhfYH}C}Lt@m%J8qG#%y3=scR2^fso?p<<%gt&$Ch1h%eA z`}_W(T?akUIYE(6TIp)k#KoW<|J5f%D}ZJ|jxu%SZkm#IwWD|?gY)|4I}*StjROmk zr(8zQZm#*9llp_g@m>V!>G+)CS6$p)CI5)}&t3^S0h99*Xc?r$-?f)mdX?yFflW4s$u!@A3XAfWyz*s;kPsp2lm{&9o+hubt0Ec66 z+7azQO3RA!Azk$JmxE<3ug{rK5V86=+1Fwmh@}zEVq)?H#TRIVonjAbTKrG5TAIIib> zY}vRf((t?RdQZ(f?`m1JUmW-=jU&NHX0qvAvSppY+($1eK=^r^Nm;Tyzh5RlM5#R1 z{yv4)x4qR;5UYKJTcyoa)y&#atX$dP@jc;lM(-(&Z(b7GXbJ)y@iVQ+ow~}oTPRiumBYJ&--!OQREeIX#7Z}X+PhWP+ z`!kcoTsT9g(^p2|RwwNFB0NbtREeUd+NhlJk8rGYVBh8&wlGA-w!WD*iSTpqL>}x%^MXo7mF4yG zlWAgm?Vc+)P8Gvae{;8yUk~>=QRS|kASo~IBU#aJHzV0zCdfsQ4Vhbc7dF+!;b2En zU+HcVrK>Wn5Lb|QlakK%xspc*Lx|NddxoQ@8*Su_?!M;=?ANZPRgXMEJu693DdD0U zSrd&>wWy{uUseMX^MA}PmofZ|(?gny|MXakkiZzESZiajKptjiW8NS2flgb?A+!C>op`qS%&M>%fmVasctJu0u(ZTmuEOMv0BukEX zc<|ovqPRDn+c??NMddzS#pTSD1DWbfiHJLZR3XE#=mVnu( z-qMKCl)rp>&|SNV7RNJe1LgWj)ATLZ+vGVE3{NczZdy1J8@|X3gezPZJ)reyvBelYa*N-wAMA(ZoW6~u01N`=H zq9MeZn8R<;|G8TXXb6+=gY)0rVB}IYbjt3!`UHJ*K z6VfiQugl)5@np~{MTfhrgyB<051AXMm%{Qlt(j&5DbqZnVy-7VT6!|+IRQ*Ck~}`y zD%a}gp1-WptT+50StpdW304L?y_mjB0Vv+*oO*gm7@ww^pI!&@%FFnOd2#dUiG2Sf z>fKfEn%ab*0OJ_yPr9ePF>RDlvp))MmVHDT@`o`or*E4}QL_L*S;3BE>M{4K$Qy<` zi$f8vb> zutK_X$dtcNMeGj^o9sF;ErKm5Ek4M~2{5sYGoFO_yGb7X=lld1hyOpo$K%H7G2R~p z`StRDW)%J}pcVf!)iLz{NFJS9_Bjo>3bIKZTbW({bB09`n!(^-`1>VGQVPBcr01Ix z`JYoa6Y?qOEK98!D&IqGOs5k(HmB>7qhT3+caz7+UGKAes6`?|V7xUocWiRo0J82O|~YK-`weA)Lwlm1rLuE<>5<7TZ33 z$0`J3Hy18(SGBG7Q29gyXFis@Sel*I@3$5n&>;V+lX+4?<;3i~PcvNOw=jmi{%a>r zjWc|iUFwhc47ZIkBW6F2ynu@g%M15wyGi*!l2XYw46d~Zs>(jMUiYTY=4V%UX_fU= zF#;-2?cjYd;W~OdkaDSIJ2y}>hB>XnCy2`VBBGK5;Qg1T0>EyiUH~kiLL-w6zFuKl zgJ&6wL4`_7xS2zyfTwEQx+>unKQuS}J;|L7+8>MG5HX2m1{9Z35Kepinmp)^wTc^+ zDw^-ElqzKZnTedUI!7Y(6ko%SXek|KI5;*V3L{I==sRihKlap1Fn!jIG zM$t{sxR5aAOp9Yq{p(sum+FeHL&VYJKnKe|x|R8BS+I6A_nl^v{&hZX=~5o7X~dMX z$B!oA=o=)zx4Q-B33GADWQG zWQa_a+= za#}Gh(+&aIRvKNfKJXXu5{n!jj;L6SM*BFLKXu`*^0r);vBvLm4usuX3mfI5w;|&* zXrcC+9i^?=3w-(FKPuuMQb=TvE45<>|y(H1Y; zr_9|Bied*_A1VQ#cm>7x_)J%KVb*YMn9tfmB?e&_l^ZAFuFV#UkSTzq7DiHbV6i|q z=k9L3vF^{TV^a-rsLLSa(d{8S-HZ?$12&eM%OgbX1|?{r72-kCl_3sTq<^5=LIEJ1 zz8js|({Yer6Jdh=?kI#_-n-+T1O6#Sz1bip%$yIjf~L^`3pG%0Gpm>1Tr`D-<~TEf z`R;Tj{CIYfMoh)(=PD(vriwN_Yr9Ea2w`IIr4n&9BMir(KN^@?*Ybkri!RD-pSD*G zEp{4^Y%{e(f%^i%;VTkd<@xgrc*vjk=Cqo*Gs_zv0Y`?dL`t?U=dPo3e9e^>`oAZw zD1OoDt9yTXIt~GhNbfW>bV#=*CIRge=Gd%!Jn?jI!f~I_qM;2zHe?j2Ih@dQ#85#u zYf;kkJns?kOo)1ft44o(&|5N4wW!?tj))UxZSSI}t70?moKTT)bBYf~re}+-+VVLF znwEF21gQYu(q$rIv0iWeTG@Nez2VJino-pa@XO71-zkm4C=#fc0R|xwm*Zc2pCDTW zQk1~+))&Tyqe4|n2`W!Ny=I7Wam6xa;s2rTt)k-E)^=S81d`wo+}%C6OCZ6W!l8iR z?h;&sJ3$i&TDTPM?(XjH?x&b@uC@NZopZ5I+tS+ZSH%TYHAaom`!~M+zR$~v*l~i? zHPHe&y1W#14Qmh1?@z2Uha0|PecXu|VPV%^?+A_ZwhAqerZPTD^$%rxP>yECl{(i} z#`r4~za?yP{FV@DOwC*>5Zq$X0RvNYNj2BXNP#Z@vW46D>==;TqiD8bx0Rv;q~BFj z7lH^>|E)Dct4>mTi|Fyt`yw6frVY-{yJuyW+&j8K7P8r0_2X;kon+gUP5-5`o^?2+ zZa$`IvA~js%8B0OjsxRjRfp`bHJXXgdP?e?FW8JgoTsu83H`jQYU7sC)F2jwC~suE zk(EO6ZAiTSaHMk?-%HAFz?~_F?CFnd_4Mx>rzw27o^KlK=gjzaMcr_mL?Sp(Uuc5D z()L9K7FZes>khQ-PG*I}+C<5JQs>1?{A(?#u2u`2@}ojjePc?SI3IoGpY;z;<^k2#!;(xEm&#pgKJc#E_P)e4TC)GlP+fPqJrIrbkv-K}u?ji)$$0TIM(2itqh^S@906Ym$nwWpl(Z1j&|lvq5!BVI~SkC2Pm{^UJR~6re+zOZB&vt`5 zW`3h~b_8S@Qk4AbB*$c-FU)jh-|}W?9Ke#=7&0!)Q<5~G;m*_42d#Ih%9B?_aV`fH zUR!la<0HNMZcdezG}77L23O>6flx6|ie)!3auegqF!%j!TxMoOLJR%}^;cEj`*); zhaH$($GJ8}(`xlnGm}!xRcK550jUOMr`s_iujTEi&s4p& zaMxeY`$IXmJ?iF=N+y1*IpT$2jHn`zU9Wh2yEMo0fIii3^3ivycDcr7Lz3~UA{gK1 zC%CQl#R+~wa6;A)B>&k_G?Y`KCM#Sl&=x65coT|imbbRedtM>DE;{V#>X@U(e?1L| z<0y!;-18P$&RJNI_xfWU>HZA)+Scm31;Mps4C~;|r#*99Mh^H;CXrmqx^LZKqeMcGdzb3rPI9?{ z`;9#;4i&^{<1Jk&0@!G5{qS=4h=(#xZAFw0X9KKFc0Fj7jX&aM<6O~PUe+}DF?rxH z$U9Nz;pOsM`#M!V)(5Yee8=M<>bI9xNOmIn-u?C$2vfn1O@lwgrEMhM_#KDY>~-b_ zx3Uv5b^}s}0t&vd8tZR>4H{iPbGuuo{_QNN?@rIAV_11TW@$`JLn3hTg-EDJDAQYE ziIcVWDFopY%I?;`4X<<%KE~t!BQrGd@tawFDxUi#SCI)qDu@>l2K3?~>V| zkmSs~$kZMgvFK;0$*u=JZMsYwh!bNoDqAW)@;+W=+J!_e1v57@e_kPd9-TA$X}{cs ze^!dbc7kXrcif)!kH-`g2P`O-1|LQy!eFl8Oaz*EDvfTw!4aFznlJxr2RoH}5F-H+s|$i(bjx~5%r zm0Y;)RNkEydbd2hUyY{bt@CV4`^l4hTjF1D}KVB=MsQZDqv5XBm^APoc zQ3qUeEakPZXX;v(ER2{lpeBDwdzGk17p`z*HJ74aF;)z@+YpvZNVj{s5UZho~Sk?|0RTDFmZn*S7uP zLo49x2BXxhcNXuk=V;QNqZs@0mZ9m7G~5$ZC8r7&C1-gl{s zd?Sk!x$67$A^h2d3=-F#J(La*K!cO^nV5w5Ea>boIM4!1;+N zqN}zVC@t*sZ#eN5%&_o&l0nTY0$l>STwFZgWYr1O{9ywsc>HB4(X;%Aa-{;~{fPA| zEtx41qzA6`u43WM_B!C4V)9OgKiBf)ylzpSM0oPeq|dt|)Qjf>MZ(BDkoP;5uOni6 zw`PE+VQq%HKyu_Ft>8Sa1rqZZ!17A2etUup1M9K6EGhWqJ3QOtRAB+gcxo!5JVa1M ztB{kP6b94YZNOwbhgJ9x{;bz;>*>}r!LN*Y4s)AhuAfHQ$ z|JYyvdk3*AOHOlj*EKP5gtCsjWUL4IqsS6!*^0<2AYO zpKc!Zy{nbh-C&Fd<39uoX2FuKq%L8+w-D@N{aGU4nnF12Dwj*|HVmi{1C27DCl>kA zp73}^Q0h(F{H`vs#`sn+FcvgJ&66D!e5V@gTRJ$yrK~*!^P-pTwt3xF$yaaY0I5>O zj^y_!=Ui|+zEahvKON*m&PZ1j#o}AB;~4M++kRWGOlF7uqItpDd_f#oQW4Noimjh` zO#iqsB(_Vs0&m7nhBSuIqHuBc-s{D?wTKeMFj`~z=X>_E9+BV#w;>QJic%suh@$kf zeMs^*Px2lywXawM-*1yzcMke(M^1Ktt81#al2XKvXDAzEFbVx&>yu}eXFN~X(#HlU zH1D4gnM<_W397Lx{GrbqgfY>Jm?JNHJE!++2#x0kl*hOZaGAtvNp=#)F9uFdAC~m3 z<|e1(V*y_UAr46HK?JrwB?}u8h%YfDOd4E%!*rU3_((A4=QeC=i&@cVpO8KnGqq65y@AAW%@a@f=BY-yHeE+ycF{*n2d?NaegG{ zbxM5UC;&Ve@t@v0B(sak7CI1gJ`Zc|_;tO6_#~x76h*DHtrxx%A3-*)&8(nU9H_$~ zulek0iFcUy8xfAXy$vT#DR-nJfXjqT1{ zfIK^1c(xjxN9y!!s^K|0j8uswLE5fmof_yw+e3#d*bmPCI;8r-U3JS(^PuS0dy`8l z&R3eFSKQUeEzc0Mvu#AM{h|}KH;|25`0;>F?D$!`RR~8=he3PcoZEX_?MAaEI(Lv- znz|j16h*GX@2fdl6Wl@+It7Dn7{J@@@F?Ce>E)N(sJcLgxh4_##f)6(n1c_TP!Qt9 zLnt^RNh-r5ACaE4O(V9hWl`3T8s5bm&_S=GtLzpMojF8Oe%xZy=^m_5~MdvV6;PTBoVRj@FPb?kWfr-}S8R3Rl|=3NnNCOvOIJ_#= zX+7zl&M}rvqQ}qcU9I?@F24iIk}IUjf$i2F$yp?sWtnJU*%Ll&dD*x2>228&cDOJz zF3BW$%eyby4HeFF-d{vN(ESpkPt;S0q)W$l+@6V+Z4wTvp7RI0GFvpx1j!s)nySke;8NX|NU?tc*u9K`ul`eyj(?5PHDmteY9KN3A2qjIb^Q zHs-;99&w>s*w&uRZ+BQ<2M|m;qB+K|MsUj1opFPg=L>>8!#ybshXr<5NUk;zVbF3$`MEe$Bu33 z^R|)>2o=fPz|Bd;Q=Vr+!LN0Ha-fBXhD8PGVoq)5H2SE&ppJ~+eRYy%Z+9n=KrRp; zchNd~T9d=!DQrnJ=g9ukc!hUUulp4DSt^#RkfTVBzRal50DbsO8- z@NiY=J7?Al50aw)QFMbL{q~4n7;L4m%5Jt(Qp5d_o?(4U;@q^O2teCJ2k7c<3X(Fx zw0VGKwkqvB?IG%xs!QAPU(McHVgSoA+1g$U>rYb1xIpLyZQmqwRYc+jBZoS^iIn1h z4IaIdH@pI&)sD2_!B3ZTqzU!Yooa$9@9mR&tP2sH@MRQcd43pfyeVx{X0eGyT5q1> z{cIMrNOmFTOQ$&2-Z6iF0Ss>a$zHA>kM${B?cgi5IH;}tIGgOWd(a1;h{ZClg7 z_g3;5zTtbJ>Oa5m9viR$7tT%QJ#3>cP{-cxSnQ%z6fw>;In+d^6@M~|+!4dyvC5Id z#Eq;s2_cCRFOf8sz(Q3k1yBLCz!?&=s237gRl?b9$w{V=-donfYtP=%p$@VAOQyq@ z+3(0tVh|3cOsS9;XE)m2nI1_&KKfJ=!s*iVr?j(=7nkEyV=C%t;_dZfy*C8mW#3={ zg-nU-J;Vc5zq54l1HNf@udjtha%Xc1PConCH1h@XNv`N=@!HCH*X~7;7w9?!Kf&KX zBNKg&ebT|vwDH*MwsUfV>Ze!G%=?t0sX5wWLaz9W>31?m*W1w4SUX{9bZi*yuFbo9 zwpreRU%{NcP+uI@oAP2&o2cI3ArqYv<45w8iW?-Fyho4SngAm>>U2@upU-cZ4s5)@ohWDw&IARW&`G5t3?SL7eRJ~ zt^BA?5f>9QcKk`Do#(ef0y_9~#-n;A2sGR#iFyuQ_GN==NQDLdhUrQ^M+KKg&_5bN zEMyzG{y<0|m5wS-SD#mJzXDEczJ}!Yw?P*#4Zt-zo|e*zm214<*HMQ-N0mr9ZI0jK z4C?8&Y!=xTRK)lgysxOB8`H6j;&;vvJiq4(Lr&NsJ!m9%>^F;@v2D5l#Q6ts*!9x1 zOuLyeNx}|K`vuLL{FZ8@YipkqIhx0nG^7d`2x926d;UF~8J;2!T3)aKYy6T+-0dJ4 zRP*!pO+L#LX^mWxdI-`HNb6!vXcM)%XQ#|9Y?~pI#-<8LPWWhvY^BwWGT9vn!Oma} z)Xk{0+e%0a<-XqY()zFWJR5d6-WKh#L=y|!AA_=X6Z?-jN~%aO-o_ z?Sq9U&px|>(&eYsL$|}u!cC2Amfp&VZzhAdTG$faFw8aKmNtT=@WEN-J2nM9OE(>p ziw13I1Xw7&Vv^UTjD)*F@BHgkNbZE2dN^O&aOOTIW)T3*sY@a|^d_xSak3_=9nF=& z9ipfP=@GlTDw}%w;t3*AMORvA**C459(dm4M}o9(Q07!q-l`w6@Gqi72FI0|yO1IV zeTXLt?Ku}J5lNc{`42BC@+Tybv^0voH=11YeB1SKL(Zw2J`zuh2W&AQS%?;wcPf9luFDGL|DiuEA&OnbM{ zp`wX(In{_u<(5Imz2(O+t76`tA-hMEr+8?;7TF0PD!taor`cQ`jIN(Ny=>f~Gk_6{ zdJ>sa`nDh(JKcn>E^>)O?M|9%0k|1xB3pr2Kb)g`4qZvojyLB1R>7Sdg~iM_Ai`PO zel!dTkd-7{pFYdcCstCa z;XAjnuu8qh>mLu0DzgPrf`6WOIZ@omr`Ijzw^f+18jsT$KVA?bd8jvo5sQ@l0?oAo zsRR~BCH3AY&$;7%oGhewK{yj3PDk;Jj|$SfFC7^bhAfEShT~7jIem_d`FYJ#`8fzC zGHlGWu8f*{?GN~1E7Sc?pW!}gv_lMlyWmba`4F!+yudtaajwZa70X+e_j(ycKEL5? zkB-84Q4(b40n^r6is*?g z2_Z1XOv%Q-#gN6E`33J^K_05v{nKc_Z$7V<_cd#l<>KAxS#`E>V$&T}{sqxUqYXKA zP_d8648gRarWM%ab-h~`u@L|k4)O}{2(%YfCe)`_e?j8yr5WiAa#=4sil4=@z`uzKlmG9kiuFC>hl*>_YT>p3_wN#dtyY=9Z7*!kurLv$)(rcLAtA;3Mv!%bg) z(QZZqMXI##wEYBp;?6lf-)#2A51Ycjh^D+=Y8$|h8j2LppC;|*sL6}`uxY*Em$1-f zSA;&Wzwf)(!pav(CPcrD!7!%-Cr0gt+^9$y>84N5D^TD~Ac|ad3MsOGL(~ky?I!!z z?ns2e*gJ@-!~QDuLXeiy7NBt%FHO0RWcYyXsIlMTu>P>n zd@*mKprISdwLQ5>v!gUjd_7>6%$^I@Xm;Ur=yDv6`kz%2! zNFEN3@be*VA?i#(1QKpwTdo7Pelvg%;6i#s~oJN6Hq z&G>xcij!&uy4)h#3s@_uC9}MHIRr0a7yrt{G*qM*?9EQY(fa4+O~A1yH7(AH52M5F~|fw1X< zH&{8Dqj8W%a^k~cXV>sD~<2xaMvd+z@Y_z13!_o?e15#Y<(?CA{{{8Fv@%Kmx`|D8t z{^P$xHO!n6Hs2fiK7WTga3}3ie%qP{w9^&vc{qkkBbd6R=MYxe$opL_*T-5Dl_i5yD5sPX9iP$P)q4iyP%X>m%f-O!H>(#nQ){@45&wJ* z$R5meA$pKv3zU}~^Xc7;@ZgSS*4t&G){}40&rQDc>OQhS4q4fiRwMl`meosEK8^2N58`}?kjYx$xE;hTXZXnE(_tnup@|5fxcgZw6TZlQ zynDf%D43Jow~H|5k|J10%7hAXQk7)ZgIb@4J|R}<38jFz|Nd44WNn+*a3V&uiLPV_ zZ-4z&s5xL7Y7OMc5SBl4?+A5r#$u+vhB;_~M&9=kdU~^~2-Dg1gH*l|xq$k2kKJTJh}oy(q!el0N}*MJZh0eZO2_ES$ogMy7~&zHV6k zH6|^sh*%&r;m4aEO$qu%0c=+<8e1w{zy)L3j203OZ@+nsUg&!`7_t{kPw1ea)ZdBSt7hA^DLO?ECvA-s|Lil=HIZ&vx z@q_{OUHT;rnob1eU^sR9tc5DC zlf8y)Kt>kU-at<^6#%Iv4hA`p4Osd2899Wp1Or4(}i8gk|>}t$p0O zLZ~x(nM?GsBV+o%ZtHx?`A_;Z#kVM@%P&=E5vd5H1Ipi<3hqIK zKeajYPsokmw~YAe^3HVCUd$(N&|+FIqM*N{z^oi& z3@o6iggBmfnR|Vg(;TfJ(|dG@Fjfzp86GCnBkU^c1M09t<9a_O0Cp~bOYmL1#?^?RWMP?I_!y+tXEk&8aY9q)pJzFicMDl+i}Yzwqz8c{Ql-N|I6 z6x+flzDR9`8B`QKYaU7!zyDr(NZVLfH{1VW>pKQ^y z*%C7J=hOMJ)Bk9RAfW_bQg31{ze?xXuw(Jk)oCy|MT3c>rZOm3S!??sMQR`8KO-`dv_kjCc*! zUn|<{`(2n@JpC3CvdO;g(hv>Ejz~T8CixIXHSjBd$d0*(r2dO6yf(|h)Le+| zjD!uZ)k7m0>VADi6I{dTs?5Jyjo!DG^IS)|8$2Mq6LTBGy48} z@*%7;#1F#kz2}AtyMaQRfLSfg0e|^Qw0^y{>Ke-F<&TSO)#+Cg8-0KkQg>lO(yxL# zhSrgp95z)d*(xb*W`mixRo*M+TkwPHUstE%!oi=5-G<#gYREQt>YgYvdNb|k(!Y@R ziE6Kex{4sFO#WIFv+3_>+i3xxTcSP#+i*RboZ;1a zj>VLQRc{^TdiZQCIU<4)Z-TNDlFvpZ%EM2hlj44$2uZb4^NlOOa=|W5y#)jD<-Ov9 zAT4z5`9_SF*)kM8Pj9#;IJnj&kwLAv&@1WK7%uY<%lAVHt}ZPY>AbY5*}b>6Z?U{o zLVRdpNCs5!lw9=pVvAjECIl_-&S?r8?@1tgs_C__V8R~FI}Pc zw~zpO6v3R1OUEQnwBUuNx~x``YbM64Mh>%o)4xL?M^j4l-y){UQpq*>M%t$De=Ky^ zo<^NSYJSYd;3i1z>;(Yk)v0HY(g;B`emJ*%q*x{14JHM?U`HkS5=ru3K3Z1) zF*IfqbZ5tubZi4$-XjhYYe&?gZ~{Ft(vtptfjZ4|>zk4STnP!%EaTNBsj<0}6J!t@ zyg$5Y5Ib5B3eoCaqJNkG~)up$(>JK zYT7b7ehNRMa0AQ4zIdl|qcYh##`mOEY5`xTE#K*DJ_9H!gRW_D|%D3Aw+$x`F`| z9g{BFNwt2q9Q?~3TFBuWg5D~H0QsU%-qH-)BkIy*5=|DI5r-rajUORf7(*BxN^@>f zUhmJl!sIiLg>|7L4~NA4nz*uvE`_IlGZ<~|$5=pcPlEQONC}Dk-H7RHW(=-oJHa7y zF|{YW{#Achs^a386VuzOv4n7vBo$tx{l9viBS#G+jVX=p8jf|eC(rH+L0#VItGgt* zdwXzN+Dd-GGmfV4Sl(L5nGNJ+n?rNCg_9r3OODsO=siEE4e)Q2QM~abTXNQC4)}#r zu7zO0S0(i54}g$&P!XS7z3%B;)PqVi9s9lolXcty* zEuS7)Atn=UmUn1!2_X@4e&LOxMxC9c*NsSI5}yuF>I#*R#(8SFvm7*t(63XS4lJ<) z$`qY@5qQ!AFLKzEy4w` z%)@yA#h)#-%6^X`p=CE#>;FQA@#|zO7C_CnOd=Ew>PP><^bS`+3w`|R7_GKcni3tj zj!K<$!16Kbi4+Isa?e$4PLO2%43g@@fc3BCPkd78KX4>YWkr6hrnE5D(qV~!hQ#Uk zM7b5US6N=eR`L|`!4O2LxBTV$6t*W5XQuPMBSp0H$%-&b-fUw?f5C$$ z@!5=^ex+Ax^hl|lg>cMa1J&ffuQ!jVTkJ3)*&6ykUWcKndWhU{N$KBc&8+SH+4PM6 za6OU!8|LbNTLtpp(x?6}|CIl;)f8X-Ur^+`;_4ysi2u^d`TtQ&fxq>NEG~dpEFet6 zP=mEtZlj-4;@~uhif#F}slG^Kq^K=ul8rI%4g50JUdxKFHe*iR53W+h#2V97ywiW7 z4av;qk7k1m-c|@kwyg^YcV0r>S`;uU#Rk`Y=i%1Pim0I#SYQ6}*|CKETN7#^rTksn znh`Hn=~ruop?ZyBYG79jd(4Un1=b5CdgZ;2=;0695M?O z(X0U?@4uwfXw@x$2@x~A))lR)ell&6tfeYl)|;^0^O~7CCBH@R#t+Pg=3t4}>fozo zc4Rc|VA;p4F1+mXe~A9Jgl#bV6>#|gpukFNo3U`wcRCcL*wPM^-*Ifb=vJF>?X|Vx z)(pipu3lGf7SolZ6MUqBXx6@np)I01s$ zJS)&_%fRa=kD^8LsW<7a6cYjrQQJw;`THildztaHCWL z+>eXFS*}Fzd{bz9K7hf!HjiTP>_W29feE-(Bz=>M=)>SoD^1SiHB>uf64PMJ_x#g| zIv1Heag;%1y`OM)2O@SKpf@09d1v6lL+9It@{sn3OTUDS~_(;{LQMS^&> zUo<4GqHd-Ucs}3tSzGL1%bcvK4t~(*Gr*-iQ#ZhJrBt_!CI1TgL&vdG@`W9#C~?L> zDX{ogeHVxL%I;ZgS03}wIE1xA6=kV_kRtuPKefTtpbx}4pcfi&U~*8#zeH5|Om;mZ zEdx4ivE!3y2Z4}PSBlymhlc-37NbLufoPezH_fehzcscX+E93a?zX-Hnpx0jb?3bf zqk8(&-Q$rXgaLk?(83B*P{IYJz+p zk)@av#R$uh#ID$XH%Gbd^9e7 z!IAIY6Nd6c!FH(9Gg~!l_e~F@b$Am+_E6om{f;p+FUV9hy{opW&=qr|00%9YF3680l(;I~io>47s zYvlE3t~HU1r~HJgGd@671KvBlU{kv&rIb7trb^cSdPfKpBh&6`zL~?QXCoVh-F8)* zqp(x(7KP}CMpRIHkLv|H)51K`#WN?yZ=L;|nTEu_Yqj1A&XU+g=Qh#4wmu0rCr5i< ze~rG*vWGm9(FGXan|m5n&nItAWYT5cTk*@DcdWYF=DHCxZ(}ApVRHUcnWhzQ;i{4t zI`Mq%(^l!!DP=UW;O>VxTx#nBo0(BSsj^MDxWlhSWt*tzeP0UYJRN*Tp^$i51${zg* zjBqSRo5BdSyG*#Y7F-AQ2%^^A(^=-`=V&Lmr&UPoF0lBYYIGvxl=--`y0#pV_Cj>4 zVDKyG6)3G$mKtV%?Q27#-+qWVn&nvbE(s@`^#w#=6|9Wtq55h1Jt9L$qwKV1}4hC%M!5lSD#%2mkRcf)jGvW z7U}%gVtGsQg}Wat&bmoG2Hm~z-W-T8(?!QJX4r4RR9E9QHYOH+<0J&}oD5;Kqy!It!m@yA-W{?1PkDe)QF)TA@yH%O0^5bR89c zv$}<|V?*WohMx68n{dnK9fG*7Z65f`u;Q+bDV{lwVA3s&vFDv|pTyRG-IbmuCKt z+L9=pR#_G36_ho{I^k2W^wH(t7!!#qBqya?tQGuF*VjH7xpRMW3kzPW*1}5!vThW9 zWM>fZWgS-3jRfAAlaA)gdA!F=Ow5y)IQ(s{VoYt2aoD5*a!;=2$pzZQCp0SQwuFNiE!EKYr@(%2 zU;xr*mkpg6=8rKI({>RWEJHF=YetrQ1rgd&lLS|_bq}P2@(siq9we6LsALj%?bX}& z?g{7TGlgWCj35Wg%2)?d8@u0PO$q3up?x!o>nBE3&HU85gr2CJq7Po>&LX?6LdJ7< z5A0*7oB-deOiKENf5JZ*AsC?!PGhU=cpQdaSxIZJ0qM5x9lGGxqkUoI-gA-cs7<7WA%H_6lSKsMyQGPbY4%d(h zt@{!%`@@NjzS=jhK_fND);Ek((-v$!YV8`$@Eh=Zu>pcS($Ox$Jh~pAGHVzi<$hE7 zO_I#K2v5eU_>sYB!D=Xp8AML+tHOntLFB`Fp4#20X^)_anW6jwwK1nkn_#xSogbOW z4ANTC-tkq?IR7N@J`)#a?C(lo(vpx*pWBuq>wb3iHj-PMSk1%DiiZzzH$Jc{%&`1E zA4$}NKi|nU)?c6jGEoxsZwLZ{dAtFJctE2)Du?3@mJ?`f6$)?vL86evCL82Q0!M6t85;sG0NL_|4NIp@5_%@ATWQz;MhhJ7!@bD%{^KG9Yv%srAb%*NDa#AtUw+ZceQ>;s9p2N ze$S0#ese4La$IqsLly~cU;0-td9VSxf%I(7qTxi2UZd$A{_pok|5m(jQCYYFu~`0;3Ck)O|&a|bWnyn_ir-927lBgV_P%GX3OCl8Ym#mX*cet(_{ zUhSu&QSRG7!)2jKWAPStd_^pGB#w$BcH}Tf^rX(YxDPr@Q8ArW?z5nK!G?5aN0|{l z*r6IHa|YlMEKaCx?MoPhQVlb_L&6~sT3=WoCf%mIhMm(0j`zsb#hh-c!Xh_-RZ&YKFzzQS$Be zi%pagn=I0&shkTXm{U~~>HSYg`rM@nB~x{PT?R2#C(%+k%qAzN!m8<$%T8b(scbpM zfeKI~f#yl^t0FC-Ko^<2Ec$s@-mCyjc&IUd#GU^p;4S(PUjeJC zWC>#%k414}W=14T@$O^)bT$Yt8MCKU&a5r=L-mh3#6`|qP6x5wDv~Wv>fD;DL)yPu zMq~0?2XBJvpK&G{(BG%7mtXpSLrgtam|s94Wn_GI(CQUyhYy|g8irJBl7%Qu(@U(6 zg7P@mod#=}hG^f%(IEG%7>G{x5@WIlyMxfD$PyRPu`T)c`Zv2=ZF+%RrG@8@HWd@) zj9T=V>IwcwNX~u4*xj zfeWOSxd??r(pdGastrQKeQeH*+7XD1sJp8hW^1)`2ClVuvqMn}$_o>f<-8Tu5gL1v ze6@7cd9WVHDe$tX1@cf-y`srMmY#K5sV%vPp?b#jZHA?2=1~(!m$<<{#ZqTF1pe-| zO;!8{jUHkx$s?3cS>);Al$QU!`(fZzqC!(sR;_O2{+5toUI(cb-tZ2zw(Dg|p0zv# zBE-JwN0 z0HhTo)${dn;%X*c`a6#q^$=+*9a}}?^ zSNb1#+t??lJx7)E8{ZH%IDecqke8G7V{_vM2YSn^OC8cakmkjxMi%R^Sj5cpi#<6| z!T7unn*mN^*@`% zcvJPSdI76J@BAoq@pEEGV2^O#U&a_$DAD@-^k4DqaK47^<=O~XDeT}%b%UdjQTSZ_ z94v-UCgx!ypHwFIe%6V2^-)sxszKHv1^_|i7a>WNgucB(14xEbWk!^ee_*U-)K$(; zfNf0?x=yhS3^mu{&8-Y0V3zx(fP4zwZ$<>%R!C4&!kMpdor4#7%)7|-{X?SQI!JDk z`b`*Cq&UC^-$|&y^HbCJ^3^H5)OmZWUL?cgxb!e6T&)`tNQ^Au9Gro_1>}P)qH8oY z+4vA166EwXyA4i1F(fSP8wIG_{zj}cogRu>A^g_^t|A}#T zlKD^1?teJN{r~bl+W)I3$kp>ZA|#~&omH~RF3wSWLAXhgcNO>h4Xs7+189|V&==1^)4i*l;5l2Te~y8&0f~ihT6Q3NYSIbe zgM_DPK|(Mj^u1J|Hosv)=A1jBTLWJ)PPIcu|KD-sqIq&{jkYLGx)4+MtBSCAYiTE< za47JdrxPdH;uP(V*BmpGz}`|=g3c!UXNNe{-J)&W@h-uVvFouuq&O2uvN^&7&CME; zILUS>3CC}K4E*I#NL8K+DX$@^lSCgEEFT>dATHL%^nlI_`}AhlQLU)tLWPOPeoia& z1;@`sAmLl1oHxotkxh5bPG_w}D{^AVH4%xl(@iQxd@XpWZi@b;B=;fki7k+OZ2#lm zKaC@TIi#uGZ&Y-v%&>e*LL_~Fgs;?J71|$NvCPkmM!W8N<*Z(BLXI`86_j6RfjTpv zJN{$6JRjml>_o4|ye$}w_qh2uLP#Kp-CWwx2Vm#juVimuW>D^WBJ_S> z1?{4lWn+p8*LkX^kQ89i?7F==u% zwbb z|JZ6qMGO|;D>Kaow{XmbxY57QgA>;e?0uQZ<|Rn-RmvvUDl^sL@gvR*-Sr;sW+)XU zU}>@0f}~QnAg~H=huvWZ;-NmNF|fspkwsMlY9n-9y87{^q*#y#!N`Sa` zB66iHWxbPz2l=_8kiJV}7m2=vHt%rM`<}*fqB1AjfSFlbi0|Vq@UuINTVKeKbBCBB z#JjE!zfdBQ{QQfVX=m%VO6ngES6DLm+EC-VHlacI=OEx_Keu`WH5GG8SW@m?+mzhk zfdIO}lW%;{ygs>~1hB-8uic*oj*>froc)qJTH#G*2&5@Te(Z+K3;V+gCwq`$uiV6f zNHkY4M8SqbXfp;i;NuqA=aL6Y9{VnVs}d1jtGT$-@k3PCLUt}Dj`!u*Pb@EHbuGX; zVCs&*KGJtjbT*@g=mOdhc2~pgY!O?`JLK=8Xihb1DN4Pw=@CDElUbGV6Gfil5+hGA zYWL2j{7{-WL%%}_7lS>wB~doQ%2}0mD>4agmn_l34#?MY1+o9#>Kd#5RuTdSICU~-!z|jeyzy)j;@W`)z>#{+ z!Jc2C=l70f*O5fhl{O?@ohrLFXK{+e5tKj>=kdPjZyi`%?Mkq}m?|f5MLW<jZsX=$t53Q@x3}F)ZK3y@GaLTL|stt;!y*E$C65 zlbByr1w3El4Z109j%Wp9zO*zw_<{=MPG4TINC|9(P1oRAaq@B67+I7NsDjf<8q};W z>9uw|yuE_2_~zq}B8S2UWvr1c!mfs#oxtUsX5nDt=|N6S>FK%%)$uHqB0;uCvUp8Uu=Ue9SlHvmDR#wSm~ouS;--o~hus+}*jR7*TM zZied#pA2%(EB|CKmk8^R=}uTavZdwwx$#KhZj3S{iP=e}R2kN|+1e7a&Y%xOJ@kr^xtK}VX0H2+w7Ar{55U!i^+OCi8!Jy^9$q<#)#vTMFDWrEDT{ax7*p>Xv zOT+%uVE59A5Sx+Mbr#)LZMeOLL=F=#dZ3ymd6MM;Pju{vWvY93vrDT~`@shi;=h+N zS80CZljMFVXv}_d`s=bw%Fg$bV<10=DB{ZzTh&@=Os2_>XNWCm;)T=(*4j&I0072k z9zBT*T~+Eg&8%LjsjahM*u5Q%{v5U`v^s2t@UD4+N%&O7ZwB2{ zTh8Z8K)*YSl)%Avw*+oAk+Q}ncA83XFs^6~_WPn9Cg<<%L8$$^)2TAWZ(gICSwOT> zOb5}{9r?U!fIE1E(NiOn-!%&vjDl-R)ozK1Z%<`5+zQXu0A7UO8usq5Ua{cDJW8ED z4#*yf5t#CZ=2#{~-5XE;4!3+DFnFu{=<`&riDe1G2-QP@Y$NYQEAyYEIoK4pJsu~x zaz5ld>Ep%i6|7KBo_ZFU(= zDSB1Ifr;xLx;_LezXOAUAA?2`mwlIly!+;z)R4Cy8uDB|aQHvQPK}A_B(%P3JMvck z?UTyk0ukzL;ri@_VrQ7%>AKBp^hl2Dbeu8!J{;gMPBr}n)0Wt0jQ*N=5ZyUU8=W6i z+)FByi4NC{2TutTAiaxvwr<6Vq}+b@vleSdw5dI^*H!AoQXYwmUV7wM#~Q&v;bh%= zanfHh0xE(wSbgOGs7_pM$S-G2jvbP>cQM40x=XJ$MnG^JA;RQ}(d#iVqz~8~1H_w1 zw`)$)>^_i741nHkqNa26@1`m5|D)3p3MxO1wP{UI4|!f{k3)D2yY}NVaUQsZgha(@ zhV8UyNv-`!@hxS2EI6W8p@tcT$^&guuLp`S1?0>&H|in6%>qQM%a!b%EsBf8O%Ao`E-GyvpKDKTzTa~G3zSTg{PSZQXN;ztAp+@Mh@lec)$L| zEExcP&rV>l1r|7B@6@foOTK=hylFU@>PQBw7(=zl_ zt>=iWIqw+z&CS0^O4&<90f5F6Ff`;5iSC#?8V64oQw7mgU-nML__c;WNjCk0#4RL3 zbD-FwVRe1DrOoGSp6VuxEWagU&!7A`^1X~wnMDtWfU??QR2nf$|X zyo$iMb=4WV7GB>{eW&7$X;prPPAe%{FBUsWh|jo8E#^x};PLU5A45_uc*A9s?|2WL zs0J!byRf(|#N{y$5xbpV+0Fm;gd^Veru4|YSyD=*$t$f=+*MUERDKl%H+#_J5=d$tqKIBuV@`7(qMfLuZ)%L1u)blr+L!VD=9>|&gaT2 zx?$!U;<7HuB%qX9DF@5(m>SS~d!-PudUKC$jB7WVAGT0p zOPZEG|GVShvjyu5Dc9SQyL|3#t)hE3Rz)88d=8#ZGR8TLJRagp`vsF9_OzDw(yxVetP=*O#EEa4PQtNul149kHsOk7TXC_S* z5JJB=tnQQf@MX8kYz__fYcjoWmV!c5N#267EimbQ#!|PyL&@P!MJ)M+@W*AV?#K=Z z|8wWHnr#KCY4EcpP$oW6zQ#UmR2i2Q{=2}B-}mkMLN5h5Cg~nNUUNCm5xMocp;k-? zLf6Cqgh0^Il(H~^L;H#gb>t#8ixSPetqUIx_pyn)$3i=xnX8Nsyvm@{x9w}zYGVyd zBEjUfZ!A9bvgcgHX|&fq>N8T{e(|I>bR|sZP{N-2#IQnnR}OF*C_$P@sc|cnhj{1* z^^i6k$k0I}^9NwJOP7twrUzk#wBTX8{B2VNI!sROTk*KvzW{uRV2E@!PGsIcnU%aI z`q0oLfJ+X=Tf-QyT|GB+hs}@G_|olHryI9EIw9|juYFKv7Fh8zO-McBQ{JqLV@YPe z@#B~7HCC3u@26q<;P*+5HC2@^|M-yP*o~Q$Tn6M~m;x=^HA60%EId5>oWzlicJxZq zxNrrFF|zjg?+ zt@BHgdO10hvo%ISQZN4>aV6a0)U-8O1r^r+{EO&l)9N4O=#s0O#o5lwKA5 zF{;+2h6506lOGF#w^O(g3)nWltg&hB9wy5N z6EGj81ZB!gi`mxH4^z0TUID9Pmm$3PVs2;YwSsHx&)kk@wB~)wMsKG8stBe7DY~bl z*SL{NI9B8;Fb7BmvA!65_JB`ymqpn29pi?5I!V?{iQtXf_28f!PqDZzy&mol*NUN+ zUj$&4@v%r~9kAAXE4Oe-j{8}`6ZAfp;OZ)uF2PRd1~>|u<|po0+nWM{ecoLJz^G(U zuLMfYrUMCy?ED3^>0oAaT$^q+(0M!#Er@jgT^u|$j?0o_0`33WQ{hz;8ZeLWiB;$j?J)%W&%P16E7;HrL1qAwVs5QziIMz z%N;4tQ%2;VhC-t5zB^o=ApY1)0qh2!yM0G`Dw-=(uXg1on^gqxhy=&ydMqjm^d=mR zlyI5nZ)6~VTVu{ZrX!U9{_`N^wz9m+`EqUa+T6T_!{GFiQfnxqC8M=E_sMz{)CSSl zZIs*JPF>}ySm+!cr8St|8R!CgF_?2YSA2ZJCBkJ;wav2XvDmhzevI!{m%$iU3BS;S zF&>PU*=s&gEn+nFDKQ-}WmA2Ws*t6JW!SMX)_v^QXB@qw5!6f>0L zF`VJn-a$STBkQvZUEYBD9i2W!W{zMAW5RtD1s54gR$A$?qk=l8djaeKv6XguX-Us3 zd^b}Jr2_p_UCsZRJ2WP5CTvX8S+zr*=XNU8E#&nL5Aw_-6B3ogTxJl&^xhV;yiS47 zZyfTTvhCUMMgU9D3j0Ak)P$JaCV8(hAAcmgwLI;;E4NWH#tYA^Gq6bQO*|c)DGk{O zpF#XF%AA&d#1&EbVKO#}TJ*uEo%%u@^rmHs{z!Hgfv#%G^K*in?9*`S#x29X!a~D? zb|2tTy=b;8)@GZ589C8M-|n9t!CGAMty{zA_Ztz2tsuZk{hiK3cgF*l2^XOS$)@46 zI)%7jXwrVKUn4i2@On#2M?a_#84h}y_TinEN0+Xpa|VB1Y6ewi^3FhBn|h>P=q6ZA zxNSMbFwp;TPg|Xc0%vPpTat*J*aou560_dfM19L5Sp@nf(TI@0(bNOj8&}QV_PPf* zhVPrKeZF~85`l|c+b4Y>*-)ksE#(&d2nP$FgDJf`N$6ZsEbsd zNSson2w!nIoxB6Q5vA84HJP=-v){3t9CuYOkriY*ei`M1R6-phwi+3jdI#ncU7Zs? zpR_tIB-~znkZ6!5#6apGTibPaRziebJ_SbE_N2TNJx_VvYBX& zMC8zq(uZ{>K=Wj{2erRk*K1yrr>2QRPBm#xchnl7$uox!(@PUc4Jzy(yNEgTv*iF3QJtuZ6cz`D)uv=>fqd$M?Wf8F?Wt6d|RQZoP5RnRX5f=pK~Pvm8iiId+s8&2PzWCfGK zPgy?BLY&Qr!-pXZzyoO6%5Qv(;wQ}eM=kk{N~Xp|@*EfZZqi=(@r{=!^biwk^y%&% z7`9T@c6`%)`ziNnkM3u~4yCUFZGm_BNdC6T)6iZh&;RR-l_kdBXZIkcJQ??XhH4TM z*8hkrhQEgGI|-w`wx3y9B>3~~#^_#H0+qe*26C+L6Uey0=$f83sPcOUI|&W2?-vJ? zG;wk100Bj6nsLDI_SCs+y+le_pUhS%~1%%uC>)TxGe& zl4P%-4U|@Ssp*MMb+XDVa_*yIkiHOUX&pG*whf3S04Vd=VW%cR*G>w-4UgaZFYoPg zBepo8O7_0 zZoO6+QP{86GAvREUe3Pn+f1Q{-jSiqDe0=nOJ_fZq&${9N`uj0>)Wx*kM&`rJw1{_ z@3(j{g2`qeB}3!c-g^~vxY2&4Y;3X+Xr1&~)7S0EZ@Tk-s}6nW_l0d?2vCnlJJ4;d z>|i>K8o)`&S;(1Gu4v4J$JLm|6?3q0ImbJF>)LJ>8waZBr1d{X3K`c%zVQe zJ2?BIj*-khvy_S6wpj>u)imk;tkc1@^bB^juPwY7?TPDl%4rGdd-YU{1Kvwxe$cT! zmE$Rx-2vwG1SM}Ahko<+j@?lYJ@xUfQ|A{oityb00Q(^3lQP2m!90Gh?LZ9-8Rwq$ zs71XR#mu$MadluUHoXA4NAYf_%^oA04%EYY@7DcV6fO^sh+qZ?GSi^>;1sABeFlML z4hM^|2f080L?;UGLZ{YCvy1N$sLpz=ehBjNRxms$C{mHLEq!EG97bp1HV=;$Yk2z5 zstZCr?(V#dl^UN&1d19&`ErAeG_aw#?FV&Vv%mZN>NfZQvmtnlepoLNTrh~>J%UN z$I~X&PUShRX%%V&f8^%!3tc;h@(n|rhqD^U=-ZRW5kj2{x*3+#s#pC(e8|LV7|!Q5 z(UC?$&I+4S1fI;BnwBXr;LCvoI~Z^5`-!yUSFkn5NeZ^K)k%|mNyA%WjeGm=ygP0M zUZt33S2U2Z);tX1hDIs&n1>9tV^UcyeJWR~xPeaVld-GL572m|)G6!s(Zub{M=4!m_G^`RzqEqp+7aQom*MCh8Ui|yG?*||DXFl>z;Hvoi`6*fZ?0l4z}}@`bL>0 z!6Ca8aQ-`A66HOlO?Rn(rKf%5Sum72gR5QqmEvh!8(uH3B3lW@Hh|DBXBX?@PsYf& z+vB+;M*1sVUMmY9QVZLc^yc>jIEl@-ZDI4E7%?Ui3!+C4Al}lU&2$ zzzH{uy){vX|A&+fm<(lK#-R6)&iso6x6)}w0&NA zM<$jS=3}1s!d$S0B5>B-8u?~b>Hsd_@C<0e%>KABF4v3Du9rh6*gR$3AUm(TzA{kM zf?N2^dW)V#67WT|)Y?5`tHF|*$4geC@j1*~=+6?zE`Bn2zQtqUMN#Ont95bcN5Q|x zjASily(?0eK@D`6#j~;vmJL&Zb9Nz?ktY?@U{FlH0*HX@xP2Ux45*SR5S_U6{YUAR zxJryFk;T;rI@(X?RiWUi+SwCdcDw&$nXUt|~qdM~6AdPFr`+dw&gX?Why|3j`D&O@8*t!D6rf{MDcHB`mc5=FiKB z|A?!<8+ua5a;5EvF>xrh#uXK1JxlHK^;V3##%r)&gEuEcNq;_6Ac+K`t43BG=(jMp zSI>ObQQux%rlCEsEm@E-&>gUa9V%9}XJ<%sXf~dqcFfmsDm{Q_XIbTyZyA4~DnjM; zYhNv?xotozVx;xVLbbX%-#xrtUHJkhPN1-pBDKl7R7^4wB~C*6C(?4TNG!yygM$7= zu>U!aA(}MSZ%oq)*6zkZGLuT2{F2bM_`Hq>NEMm#8BBq+zD^2|WJ9t)UNMc^OrIQv5J zSu&njRxgC|>Y{d`lfU6@qNxwlJ0qEUsiJA%0Ox%?wJnULpQQ{_(ru941@MXqdYZ8e zM)g$=^SuZ{Fqa7mU1szn>o!&4`QIUt^tobq}B$z$-u#`0J` zjq-x7o2Vx@zB<7VyNJM z6?ggI`J3~JK8Lx^*SJ>*3+qW#?VIyxzVZqm?-gSatEDO0SDy3(wu{)&AMfUtaiy<&k)!( zX3D=7vQl3e!Gt)l32Ga;=hi}643w0BbXG+r+<=QtgF{N^THy;N5?-O9ES-9fokNr( zT>2S|t*VtC_atLv8&?puf7Wn6Z66}Y_{0yzR^-l%1M(HG7hVo(9|xH?Sns6VR6gr zvlc(_M~x~p!d8n`W*Kh7kUVx{LwDUotdUL$@e+9JoZVs@^MvE~7;%)$!tr8d)qXS0Wg z;zA5Uon#VOx#roQ6|r?_EjzckqRkwDNV=?qyLbN!S7jBI3x(^*gux> zmbE)x8;7KKjUcM71*4S9)YRbV56*`B;Qf9GHNkzOD&iXX2#ZM6WZO1~L?T)`#hb!x?i01hf z8(@}R=qz^KXqNUI9lEdP_JBJ}%_4hbpnp29%(M!GakP!v9_V9yckM7&0d=)iIV}1+ zS`9Rs&Lbp$pUXwH;2aSpag^p+u3xLkb135`S79}>1}lQLBln$8jXFx0?))`Q*Q9_(}Zh!19K+IrR;18 zw!F-Ct06423<|dxiqYsonY~2NB%vDL}3T&iME{PIm2mp^)C+xe{7aDn4JN-0yUFvLSvmh>w7*gfq&@#jeYTw=E4k0el)o=Z zdDmdt|4Nm2#>Z1@#CM*V`_}Tb7k&x<6NV=SjGOfqK|f>i7C!s9_xAZsNNA`7f5vta zhX07G5x$lieNn53A#-Z7Z;mkw3{`IZfYh5GW6>R1j*~IQ%c+;K2gEAAJi4ft+DiDB z^4vrUPtwEwp7lVfvp%aIBIn`T!dnk`l;$GvfZY%7aVl~i@#$~$R@f{6QdIeI8NdQp zbn;cudXcFgrG?FOuT5w%^f2@9@;z0geZhrUDAS%43H$#>{crs6a1?N~a}9L_i~~A7 zV$@kQum$dka7`uFJ-I~i)57!{b}XLndn7cjH=52<1XT29t!uVEmbAC$-fk)T@_a!X zO?$in@My}HyPRzpQN9*wZ-Du{I85afqoZ*mTYIf}E7uoT0iZNsI-e~s!%RGVzYk`R zt)`h#AI>Yr00=Ana|RsNONz)9D!<0Y5QwwIRvVrvV=BKel%<|N7|lWkS6=lANOBJf z2O8;OLy71d;&t5suW`Pn(!MZIgh{WBnpvu5=|)wu6sP`&rf^aZv`E)F8l1SWRZIie zcK*!6q@B+=X_jSYyB+Yc7L{74<60xuvio)BTSc8~g#Ei*oSDpUu17Efp3wnvx@?G8 zu6c4d)ni*jW+Y?7*f%#bvxQ6GpN}=`+HwF%tTl9`Kp3`2JdMExO7GE=4=A9URcvT7i{qugJ$MPd!jZr$@ zUBxtpsqMO04pZvK-+2iucZ2{SvD;>()5KHt1`;N8*D2xF+Ruok8xT1*C$n#vS%;C^ zKD>}pGGYetfh4lGT#OWNUDcZ3fG)pP?8#8Dveh!ma<4N&1Cw4iaj>G@ANV*UBw);fUg4n1KsUFmjsZK^z$!EHO0 zVt#?h5i@V4ynl~Av{wQ4#xqVEn#EGOeesQW`bR|bqvmxi3w`!V4MOU^1tC7~ZT({o zCO-me882j?XK{Sh2_W+rF}9!uA80YJ9sOf_SqNOcZ#Lc8si#gjoVU}mS--PPn~IPl zB;}M}7fok8pYq14vW#MKfYuL)qrRp_`zT?w6S8&$VEo{2lg!~Iu8E0eCS_?tOW^aF zDf1vEs8&sx)^=6)Qj)-H)}zb!06GcQ?HTp0}r7lYZk7 z^w#agRPLFwU042s`Z1M2dv)V3w~Gow!g%QP zCN;osAQR*egAiT;7CT{V@;LDJy1GUD92$MEsxk(2iscsFFB_ZxEMCZADiVCv_Ms57 zCs=qRs+aOIL*&1}1k4qa;(xue*L7!WTcun!hG{0Gn>O2ei}RTvu%f0Dd@=~;#w=+y z6B8{y?!9Q3R^JM+$FNZR**s{10JFt%K)M_{rKgQF-X=N0A+7!u#`y)%pF3mvqrb7e z{^BM2aw>_is1L#Y(xko}T!eQ!mDl*+-3QW_H4^ zN6=lt+yR>WxJFnk3@uuGwO($(wVq)R9vMlwbUsVFEFA;WiPE6jVmV+9s3NMQ3IeEX zB4?|1=H=9xPbVq?P_MFGrd10rf$O*K9()Jb13P~@oJCYU z#z-#Xk`ANhtrc^l`Pp|W^u86}`jb|wd}&JyHk|;qdKp*t<`4feZ~ei?AZEw)+4No9 zvz9S{jzg0re2e5-Ua9a26OvZ5+=wys`hac+h6a2b2NjV^8m z_>op0e2w&@YwF;@tup6Aw9k;szsPL{bG zg#g89#kgq8zaZ@6!CPJ39yT7{Xyz0#b**>!2lH!(&JL$f=|q_O1qi5Kip}qKhg&QX zC!g}l2308D-R?B*hH~stX`H$ICy#X};fN8EI4RK9r=q#VSjB_~k=S=$rumqt&j2 zHdS@q8N5#H^Vq&xao|uZ(YR-XY?ZI5DP9%)Zaqy%%8Z@To$gG^VB81l7vrH4VecK~ zp2}U8U*UY%TOQ>?8Ae`ZUs5!XE~VDIE%QRl=SfK~1vdAjpkx-$q%DtVX3&tZe;(S~ zpW`i1LVhtUy)7x8S+eB~UE-=J`>u;E*4v>xxfl+}TTOdk;XZXl?R;zqgJL>*GlnKF z3@CWe&CcJ@t0lhvbl2QQ`_oUpj5hwiataQSwN>w*1e4|Lrvg1a9S_h%PGQJ#Ymfs6 z-=u=&m(b?z;EBiAuV}lE>rS(~TDPc2B_?H;l=OeAVG|Aawpk>*(O~lEo?Hx5paAVX zp?TZ9&^e(MuGVykBK7M4QdX8(=rmDtbLf~7nu@%dUp6>2FW?`kY5w#R&G{bBXDutu zCieW5&OSWq;g%QH&mfEv>Sx*AszZ2(a%Sr-6jKF^wY%`v;;?oNxk+n^PZX1R4L zusBJ_#?^NVv6CX?%PG2Nk5C zYKkCmER}~{(RT{Byhn}YI9g=PU7nWmV2m2jr*r;GgUx4l0?zni&OO2jcic6`7TpT> zVtSv5-~#3W`m{J1gLH(S(WKFsGXtK2!2=fEF~iUod;7bd*U;sGGTPlksNq@=_j%XX zll&9SVG>cwP~d1m?x5@BRG}79_b<7Xqo56;7}6XE^!!+}crHVttf!j<%l z!l~TtplMoff{BC^#BPcBdvG;h^x#E$!}nXL#!_yfly)sRm%kXn@*N(X#5T8Li8zWe zv}b{%O?MCSnj*(MkB9+B@JHQ9%dPW&V8}UM1Kt?~*9;SE6w5`FjS&&sgiOwLIXp2%+Lm_PYAuU6uW^%G zy~6p9o^=x4?llQ;COy+ny zt~8lJ2|K~cIHA0gx9j-|&23^nIgl8QYU@kJuK!(5^nc-$e-oUdeMYbKb4~|_0Qnja z5|rEBsINu1hbV}+niFX36ZyK|L|DjQDA%`~`z$NkJ{UR@>HMMrxIIytOvO9fyAP;j z(>4WlzFa2ePl?XJ<+8T4vT>e)xSHHc*Fj%|0)nocRCJRYflmDDfK;x3hz7Zz=`yNX!=F32gU26Eyx%yU8t~L0UFV@EnUY zr5Pf1;DzYkkyZGXFeR$}`cF(nrG9Pik3u=hahVptPTvQ1VC`65Pnr7H!4IG@&Vx5W zloeBLb1;m=(^h>mYMGZpag+M6XE4+bja#lD79Z11V|QuG_HM?9=&0Quop+i za!Go74>7ol`Dhp23!x)hfjA^j8e#j7p6lE#j~D?HMcx?$YOdj_M$(64AyPXLz%QZzy1nki)5J2e3`|_TU*OT_Cu3QNC!IYKij=%F}Wk6mWr6KBc zlRE@07%8OioAl9wG}G__my{Xv>59KxP7d_N5;bmywPp1BbI!_egVR9TB+O!_B#1?#xV zZuI|2@;G3=aRA$@v$UN~cJ*0sMLC@~oO~4})Hp#2mHKQjzhKeepy6ZmTgJQF?u#ZS zUgZ?Pf%a)L7_I#o=4>(e1Jr6-y@H|kN($g)f=W%CXt=c! zMy|(lc1uBxc8fmZX}fn$>Ux)3)3trk*EGVxzP`a57{SU2M)+v{x1ZYA`rpZ&Ogw`N z)+C>XliyfkRgmY(=>GCYwS*NwKujyaSVJpROZ}g$K4*g&IHhak@Bv_;*OR(s=D1O8A=93?I2x((+smJiF|#c zm;v`hoCs7m`{`H@$Hg0pig>@WY=Dhw@oSBdoP(Rq(U=F(I^kA# zcOvvHf2v0R6``71ePTxe*J={rmw(DVf0w!8luwm+Ujeb9L3zDOYPh@^bzqP5O@Bjv zxincn2}Hn)-3kLD(8eAQ#MZh3(H+O(xG| zb(i$a#*;1WemPc;x@X^o%j%9#Wx8XUdKe$ML-$a>u8g(7=sQcqp?HeJ>}9FqPE1LH zz?5nc;AhPEg?_`y`kx>dE0_$gf5313VPWqmK6cOFW)gy5jAFcXg`QeKYx89Fb;Ep} zMpZ0JfT}4T4y_)#b8E?Et!&wHK3|-W_hE#F3vZlbAY|p<@6oYGht~457vl6tyfaRP zZpIVdR}CNp_y112`4Dn0oPXI+Rl4p(}2NxiK!Jd zk^rnNe7wzVBvf0W@8F%i#L!1=ik-KPs#d#!@GVtEx+}E1?f&sCw>j5!Ix;4aa1tcE zvV(A&B`#nA$3K*6e70wrDS`}FHSNQJczpVwy3LY<0bv{SBK}S>{KtRrWaPUGbS&A$ z9I}+@7iG6Mi8;kqrCuh{&0=JfKfsQy1EN27+v`oU=wKb^PgewvML=SdotpltWjNHs zzVBFnwur*Shqb%oafgao8xCbpn)^Qgu@JgT`1+j#fn|NDb-kjMEXmTZP?>GB zK@&W9NS9@F-O+K2L-y2=rA3M-XY8_&3Rj%EPBM^;9F{}cKqBV0Wy3psK7T|z|7&{k z6GY)Le9d5LjZXTPDo$d)ae>zKeCQ8s9Ru&aY`^xCqM5^}9A+==C6HNRiEz-gP@(aWle1HBlNPJt;;R?^Ov}O-Wi|eO!rPTrO z$O$v@M0fny@4$CXN{DZ(e7i|OZ!Sc}D3ivWMQ3S{v(nc2?B-LdrW04+oKM_u&uMi{ zXvG_khB65(SE*i$i}yoUGBdWPf0ql0=auq$rXgu*M^G$X&~V!nIoR4Cu@Rq!u?Gr~ z#|Vi#Y7|y(pLS|3eFIru1&%cDHiP%OYMP#21|&bqS6|@4Y**@`xE98B5P3s(cnhW*25e zk=-}Nf81=u?ZKXNjLw^^#Tkgp@)LQw^Ua;)wa^*z%^+f56iRYJ#k5IAFiaIc$l&?O zQ}f7HGyhbWy!<~e3;R3C7O}BHOl$wR6it5$fJpw$Z1~@^(z#_SsH(&PqN?BT4O^s+ zrE?bW!kQOU{M(Hs9fcOMo%5A!<-#18ZY<${5DxM;p_XBTbdlBOy}BBwVEyce+sn4I zw=KJm%4*=o4a}%Yn{MKi?$9v>lA^r)CvN|HKuSyO6px#C_75D|;Mg&(GyBy=&gWUW z`%7Vfu_3eVx-UC=NLRHA#E!vFWdq5qYXgo?_2592n(*lR=JgvAe_FZd&Kp%PcH=ME z_xInotO+Ak{ToDMwn*)2$)u)R|LWIf?y70~Eu>zWHNhd$W&xE)KR0FWlDO71jXD_I zM4!xC8R(vbQM$Qqd0I3Z-&*<#&IU%sEhe}D5nr0LU_7Hcz$} zGfC2x*Na!ZO7~M0Tns&10YpLOFY>g(w!N=iwx?d%fVWUKi6VDL5iIvHdMR}3)TfT2 z>_KjMzJ}Q0PVYK}>~jlqB&|8ko`ko*5oqN0i3X#skHMS zh(ix->}JjHcH?4p;fkwvxVBJ}0$LLYa<*9ld!z+lp&dG_918Kdr{T7j7>DyYPAeXx z%yM$~dVD)Q_NM*)QEl#INg8X*Zi}t6;H-D*)Z?%h13%YoT;z2DHnIC)C4K$2)a2}r z9@hM}$I5?Y?;GexZ6V_3^1cd$-7m}6^=fT%_+xIvyrOjWuWB!YqQsk6sUPtRI(q)l ziNz;m6EfTE{6DL?Kyh!LvZ=-A9X-rjuVd(^o3klEQ^zfR&6m;m7%6D$(lB}j=xzqIuia`W6v-GBsHz&vhkF<)8#=U;+z8`;bD`#O?$B0Rzq}E zQzjj5)VIqkcNP(#btK{ve$B+dGDy1po%qU|LJ4nGh1b+@@lk5pguxS>cf}0m%8Pan zdTJCC^oFabnhCnliDyzGc@dlv5}~eVl!sI&Cmvm=r(NCiqGV*pBNxYrvbLvrF|Bw$ zp}!qLN_z%!wPt8*D1^!`wnyucbx!d<>^IU|qk7a6D&VfvXNj1~tKcZ(NNFSA5e5F{ zCfG&ozhX;75ykzsK2W4yQS_-HikLg)tCriGz+0WVa;5#&14(uuw(}=A+R!D|^Z6zx zyTAe5&7-r(-wNoaHzBoa#c#&u-U~EhHi~W_9Bg!skwi08bdd`ay@mUgtHEAmNm5Yz zZHC=B&2hB}C~7p{&5dbc9*W=D#y|%om^c*fGef^tmL>L&Yr}g_Uwn|yv35SFz`z8B z3~it~HcGHWgG5~*IJ<4!QOtp#Li#S-z?_UMCH?N#^7JPw0u;7C_iSlnV%NLt*-pRW z2QG{35Gd4l-TX!#co;0xJSmsG6qW-hE7NahF+fhkq}s~4jIZZ>zC7}GCTh~n8-){X z593jCA|X&){fax%rH?TspWD22Hd=4J!)HOO;ZMStNAi^es;@C8=Ll|IO<4qA?bF>W zqsT7NwOu!x1}|TY+cYR9qMgEN=A*A|6O(Tl0{rZYf#-%C5{UTUQFAwqD&k^o7OCPw zSKb1BR6@Q-M;xzsW0@Z%DzF12SdEq)&^?U{R7A*#n~#mQ{xcCw+!J2w@0np}IuFxb zE7c0L?#zS8;pJ_po$d9N&VsM5e>}wJoz%C0e&U!fRmO-Zee5uoQGW*hApaN7I|&}$ zI97pQQNO+ni};xUf2!-^BATJSe)~&>CCDpv{tS{ej==v2f%M0?z7#>g+j zuTCr{uPg`pDJG`VrjatPY{9I%>HwZ*r?t;3-QUwQ38M>;E0DE?fux8QLL89JuBzW# z5)`@qXu;PdV&>Gq@!Cx7ZkdhVm%(pRJMOtV#;1l+Co0)S{*!*o2i9+jFdARqnri!W z3fJ_x1xXK`sGyGYCVf{|^vt1%=4SsLY~w4`h8LjZ=$*(GFUGzvxNJ9f3irohYyVl zKls!`vD;bTZX+h4C|m1Z+_>hnnkr@T4Aq|sZ!yo)ORY?RW1FCb<6h5@b;cTQ=#uck zpYm?)*YsgCUXPn{Dps`eTRxF7wDvFg7Q%T5Fcm{hN`_EFU@V&^|RU$rx z_Qk7OuyX)5nc*9qFJB-PQYJox63y45lFsHO_c}UySGA^v>%QlR3E4i$h-UB5_5awv zN4T*-z9sk!AFASRjZ5QDQAotrOfcg4DQw4jKgqKpOpGG6qjg|9CZo1*jaTfN8#s>8 z^2pSUTrsbV&>1l*Q(yp?C?>y=%JJtpMKz$Li9e)_=uidSN9yZsslReB+xMm#O)^Vy zZ^&g?I|sX^N}tKXeKt-uSJd@FF>(^&Bb0ygx7t6mutPOY5S?k=7LK^gbN*E0)k(VeBoNTp={{(oXTBXX5WjlMwf%t=yrx*pDBf8tvyvQvLL5 z5fg(jG*(O=BiqT{P&760Sb**Nbt#vZ)VH}^5^Az+1b`d;qcI~f>K2!Mk^%3<>1VIW z>|*6V)22utD3WPh%&IZMdjDv$`?M(cfhAGS2rXIY6h>|^{_vJ{f2P~@m!CaQ|KVk0 z)R~?!&f9rUw00%yA94mB>Sf%K9G_)u2GM$QDi`rHr9%n&th?#YrpHBj_?!#>(wiG4 zpKq^gaC7SmO>0ihT`7nXT9-7;t9r{=jqvg+l16*iFLV>Q zRYy?lcoeUkn208N0ZX#Z>Hwgr);7unVy<^AWpN06AS`>jd-u($E!-?%1Q)HJ#H z!#&j!>ABM2YFMj;$QR0q3z}fXq&DR;WL`V3Lz6qoXadK~MWW_%AF!0kjAg&i#jPA# zC9LlhQrS=YA;05MgY@}kwb#cd7-;H&1@S!48SpndwX+2;mPHipXM|s88%=*Drvn@L z={avB@+vUQr9dsG;KiITLhQOefKkA4JtLe3-SLWO2XVcP?1y`q1UKkB)kYSSdj?4K_e=8FFn>a4;%qVRDFV}Td$R9Qkr;2;A!`WEd%RMBVegwkN= zu+p|9sd6)8#oJ%PpCaEB6D>bHH;HQbALH}#L>xm@%1{59oNeL1R{wQ=P1?nO1GxI{ s0C4~BGyXk5`TytRiOH+~1t}k}b^rhX literal 0 HcmV?d00001 diff --git a/figures/monai_clearml_scalars.png b/figures/monai_clearml_scalars.png new file mode 100644 index 0000000000000000000000000000000000000000..11f4cdd9441797b2bee260bfa94d4f77e998b16b GIT binary patch literal 77667 zcmb5W2Q=IN_dl)!MRieHyUQM}y+^IuwKr9@SJjBEs;Da3+9UQJi9JHlDyoQ`Sdp4R z5Jh4{_(k8JasKE3J>T>D-E*8gUoZE$?|t6q^FHqL75iLQotB!3nv9H$R^yq90T~%N zDSfH&3I*v6=gq0_q@N2u2I^1AKrohd(!*sZB^@O)vf4zN6FYL!Gu7*7=00R(*SgRD zF7$boy&@w!E7nj^G77NSL{hylT7e$?vE?Lmklo|AQ&%)`xNUVqb>r!z>trh4b!)MD z-Xyruq_Wz&0pD~CZ!)!XYYeiq0O(tNxJ-TFpOoZN zSC(x_GBU+d_?fMN+83FKYXaXNIE3nG#`@BcSQKN=vvi&@Z71Y)6LNg2sBT>(BV&oX z6-9atq6SYau^Z^NX1%@Uc3@f*=DmHH^qOCjp2X9l?Pp{-c9nIuIp)?w(rf1{=e55j zD>?SQBUN-Q{>5Wb>D@mmE|ErajY*ZG{6U*bo~UpSkW@m~6X!xwoAYvzQDbizk+JZv z+mr3FHadQlU8}dF){Y$VkM&EuEU0XtuWL;a4>k4K%B%QQeBc4Td#N{2Cp?q9?3=Ha zc%SYUhDUEu*;W*)g?BVrpkC*s0Y(b9&+wAt#{Q60Q)%C+!eGYW{g)9TdxaQqAG!r? zaqoC`@7~6lF`B5}q7ktfOg*|nI|M*sM}jbNo&?MOQd?htYXE@ML9)I)m3yQ<$Pt%{ zy{>t4St!3VWw&*H=X@`-9#$A59>XmJQ3L3J;1Zh`#g6xSY>>(P9@ATcwu}W=_2NC5 zu#>sLGvpg86KgZ0+byHxm2rtQn^L4k|0sBlZ2wuPz)_zFpYu9#?GLRDV#)*00*`yjiCJ1jVZRxPL6-TSJDwGunn#YiaRzPWS*mk}MK)ShXS z>;CQyR_f}}+uaG(SKpKwF^$&?{+96jTpwomvgW(amCubLDni@)Yp?_5hKY<^`la^k zfcgHz97~BR{SOR|E#oO24!<;!E?jcmX%8n`Tu$%3&grf~xOavVI)poLylu~mS;)wK z|G084E21xa8P}sPY^%_;an4`ve%cUN?KNZ8^4RFhaEwc@qtkt3VRDqXQ`_XH_$}D( zZQY>nwGj;Rt|0gDvh(f6d`ZYKg2%pd}&Ck?zLS+mW^%UEa2EV>s%IG z{tkM!qT7CQR;|2>7GJSOcO`DD)dne1YoS+)cvd2EV_a=PEph&53gn;~UPqICgqBXU zcbkApt6)9lVF5XyuLrK2oVp`No@blF%>9Yq(Or0-kmNY7qJmgmT zo2T%v`qSag(vtO;bvepZ1B$A^8a!V-NvveLAA_q%KROeO9=8i7({JTnrXmSoX3XD( zQ^#l_CFn%?7Y~5$MuUI2>INfPm&BZ>!L5IVjBG@uM4HdzHbtk`^+(T0&#!s^QIbon zuP!URYb7z3M!O4=S|#EefB(kqK~E;`cx`Vk()$tqzoM8Kt7x}V(0!NGF+=sg+MjXU zr-fo!)a7ut`XZ>azWukh>3_uFqULQ1_5>=@JgigwYZORDkxBFXUB=Io9M4IuIH$Mg z)Ag4q|No|>p-|DzL8DdX+-8y}uQ+N#a_-OXWT;8~86aX_jytLphp;~LOX)3&ZWSR7 z#yK^-|4mEJusL#qo=0rztW@|Woj`zc767EQ4)N9;NxS}1>7&DoQ7O|Fd&AARAB!hT z7vJM>S;9JiP`?I9R2!-3e@Rzk=Q1_)=vM&NL+*)$Wen8Q!Z6^zSlFt=F>EE0UKzpv z4__A#)jLJIlxsqvmU<_l&BD4S?{`$b)A{uvz++V!<$tG-#QC{4{qi%^9nK9u2nAf_x^?Tms#*X& z+v=z6=&!Wc^)Ct@QqXr=Y5@hHqwV+=AzQmLSb8|tmrB+jv;B>aF9vce)Us;>~b zG~PK5Hqq2z9Gpn9WnUI_a39%2Wq^-d3UNP#O3JgcKEmx2hOPtcMOHD*8z35sa{7wB zh1@g5QBa^^t!6g1HeFE8w_C!=HK-8aQ73j*T8}&V=1V*jLb$d3?Gwl0;4ut4SDUI7 z`+YSwk=CzIH;TYK2b2zVT9n8>lgr(9Yn%wm{B;B*XrTd~B{G2@zmNBAG%K_|ezx>T z%Hj~ixIZYkC$GNd1kf|>yaO-^<$QK{$O2v5Ox(FZhx-wll(GzSb#p3HvFi};*va;6 zbpqumL@GU9+9_!a`kjMXk6?uJVtu{D8*18BX+-;^B6MS@q+!P}pUm(Poi+Yzf+NG( zLd)iQUa#pg^CHl`S-$z($8g`!KzBZJDriRL-hfn4m~zUo?PGm_6%aJ>j$iIG2!&69adblYF?Ef@BQ48sRJctmq4@;ztXA@MiW zEhZ=K=jmk&w(ZaBVF^YpS#L@l_-)Eprngl_xZ&B;xob5tQQ{*GpL@0Mkd`Sm`@minRNKd&IsxE^) zXy+H%z)4=sCNR9SIo0j=;U3AvX04Uwh6St`2>kl`b@9IOn}>#!_A$ zT5XGC`%!U(0TXT9s`Jnpw8~a~@5|}YssS;$pH1}u1CHRC&8GS84*gxF&Wp%QOm&4i z<(1_4h4{h0HtykmVCTmS!Tgh$Gn@Qs^#aj1Mwtb3;rj@sycku8G@&S?!u_Ic=aaD zZ&uD}8328dj!$ijTDk3XX!Kxm>@Of%+)Fx6zI=I^~oKeR}3k zmwg@iO&}=LI0AB&xv)HP$QwL%dff)z4I^I;bh722wXPT`U~!=5+PK(eeJ;}PCNVx~ z5PLt+@pl!%A->(AaY^mjvk$lEUW#pJ*EiT7Tws;5_zf$kYYFj5=Rju3brh&$(;X2{ z3fdHi<^qxfxooAhou@_%ws%TE9n*ew5}2(j5X4oRXv^{F*P(Bl@Ae&>jD9X7#ugFD zM_6Bo@tUB8Vf1$S$KzyzU4C`Jx464~o!@NCp?>?fTVWKA=GcapqV?)RJ0Iz7XrDyy zbvo@?So^)$zKIhCXSAsd6CJ8o**_wBmJC8Wb#$tKsS$#xtgd&;SQ-V?MJMPPuJsC7 zGRKKJo+v&trU?H$BDn|5C`y1=*`6p4&&gRVS(Z1It{)wyws}qNb*6)!eDQpF zgDD&-s*{)mZ*Np|V{%`sGh@yT)bF&msly1C6y_w(q8s?3?F|u@^p?%ecFP>0eSwMH_7x3|^DIc*)HPKrNpn;Ow`#4b)CJnM z9Ot&pi-PDzhG>^#S~@=+)U%XLQ~|2JNm;|56BC0dCT!oodZ&Ut%&jU&sxSr>tf3Gr zqSfP~jN1Yy!uK0^1p<8%PItY-3Wud&C9TH`UT{~9z;~dlQ|t;S$XhF|ab_5C=deSL z(4`<0-t#P=V}5EG=Jui4>Jj-7Z~uJ0)LwSwJ1*5U9nIQ$UQ-#u;R?S)UwWvl{*sn( zqvV=q=lQ-#lJ)efzZdi%1K8o(TTXsCvHdK>x*V#`xbZ<_(56h{`lqq#v`Ha1KQnX6 zTcUQK6hd2IckA^kiN(}FG_ki6gvPhV%KH^xIxA+x5anHV&@s2N~`N2ic) zjCY43yAa;dsCGRlB(*908%6aW%|Jed(SgdiEiYnjC{|U#OS6>8Ij}E|>hxKU3*Nj3nlgLFr$$<@Od+ zmu5W&tqK@TQu$oQq9DZMS|$;@y6wXmjz`n3m6ID1b`2D>?_BjaB!U{E4_rBTgC5$J zTmpuTJ8lf5=}zopZ9rJ<4e%dt2VVWw)XrLyStw5?4q53t{XRc)H>J{dfCIf)7Z53) z`Sl|^)+Fa8ZsiOzeQ+}CIca@?wQ)k)DU+?$Ba_oMsC66ii;)ZiIMNO!{EE$##&9Bq zziV(yRbAaH_Wr&_-L5yT3^-X1(&>Cr*AX(TqT_F%DSWN01@S!oE^x83J2!hp$ujv{8#)izSr0{aUMq;E%s;po@f1U(0vYa(wum!uhA{ngQ_Z8%+lhJa!dxwFcPB z6c^R4%5p;y%}|AQ7`5xd4r<{2<>PnabCt5CprA~_RCzBc2+zr0F0o>|sL7L32m3Jsj z2m&MDl();MxIx~1K-&-@`OJK(gEkDLu{mp-=JKg-T8nW>XF=A*@LW+mn?dQuJSrZc zL|~i$(s2}u6djZA2BHPARbJnJ0WytJjs~Tbn4@TEl_otG7>06fHxts_PHF0KT}v=8 z;xCdt&$N72Hk1L=)@G+Em6+Qd@Sg~oee&%)@=e$=WhhBt>J{_#(jht!wZxM@CUS55 zDj>j(HmbzQcsT7&Ohj-#mt1&Aux%?iYJ1oQHMrL-*|og?XPj%WnG z3t|3}|Cb~tIo0NUztr$0awH+k6!%L;Y9nyV7_u^R^P_&p?q-ja`taGD^_g5f?o(?* zfRFF*JQ36!)5rDvg{I{Ky#VFDenZ5#k#-%}IWQnyLBQb2>75dudIi7S4Ci6 ze}_pb>F)l~MYI!U_UuR<`4WC~813l4ms3rIQJVG>#b%B;2()Z)MUIg`h0{a-0PS?I zqFOxvr)9h2-R6?@7*uB2dO0kLpeM9;n>m30IbL6+vy^#X>?!kn-?@R9>C9vT6dg5z zW=hLVTO(S@)a$5=#9-iDuj6;#*KKX`P}6vdHkS8z=vjn|b*ynoZBWYz%e=Dz>(8+F=4zts`UmqRZqkNJml>cFT<%EHDv%Rs% z?5?MeS74m{dI&I=BIV6(N|RswLNbM{CpjN~Ur`UZHHrOY9<-QPzu(Oh`_W~iZTG#) zPO?kTVk~wofsay*7^w6}HR;U0iX!+U?$;h4^Hq008K;6U=Sb}f-TQB!!D9o0oR2S| z#*+?o5VtQCf6`-Ei(n_}cLoiMd#-7EN18=+zltw+GXWcC!~Mlx5cs?>N3=Z~V*S?O z&I<3xA2#zB=+tJ%lA1#R4ab24IM|rLw)Xiz0ec+AduRGSK~GZ z_XRwy;MGEJ8QDFIfati9%Q&^!*pxScBjz-uMW~GGRO`cWIrBr}kEjR(?`3%F0c&4u zhbHkHpj-33`HcdZXWuPY@iB(ohGMI$mbgJL$BopRwOpI`S`i;cgO(*whU1Ck)_+ILnwyzJ-PwS7fd1nQo>11j}FHjyJQ}%Dx>2bISyN309nSn{}#^ zCx)KykvYl^-@QU11_!vN*PG{MI_Q#<*2f;?iy!)59hd)|S=~4ppIFsD0?I)q2n8OV z$^_MxGC!AHm14%d^k9xcP82#t$lESe{&vZw+hK02J$MnBa{9ZdJN3=gfa{lnT1LO& z;<)vv7S+~LDc-rBE*xPKjc*`)x6<9Qy{8=c<(?t&o_|c0ukF5A$iU!Qlqeh5%CF-l zPH-@@0=27}`Yr2UxP(dj<^&w>bGw+~-KhB)gN7&2V+@Er)Y>*z{JBQsr1@UTpKTW6 zMxxd}_7hWl<^~qoV%8>a0Tyfe>47;2VwsWAbf9T=nM~EOXl#3ye>=G0(3X9pr+Si_ zRZJC?J33CGK!mbU;uBbcP1-}Z@zhS=Q5f%+nL%t*d8%0l&ixSOk5~Ffk0sEUSVmJ` z@PQe+m2Jh#CO;}zD<#d8*UK!O0xu~(lKQ+|XSf}r8VBEcgEuS}W)vKst1hl!du(Kz zF=t8)N|8pa^9v9{puz(KD@dq;ko;M!Be-lLx%|?k(8gy5!C`o2X8BZg#_K!ba^t&rv(ZuM85^oz`_p96D^-HvTfz|R%)IJSe z8XDU@IKaHH%V{^B{P>Kysz@2u@pI5{wZlLa?KK)#FX0-;vxo`z>XR!iEx=RYpRtzM zc&j(Oa7i@*Rm{$FrKRxtjs%3BW%{b#7V`*p^Ani-78u;%I?k~53vBdkRg*|8_V`uy zVS*9VX;lb`;+fpGM?(c9z~%*8UZE8TVP0UUHr9|NT8cFy&_y`H4BR(4X|pBs+UzV~ zUD;zEg3ytJ#|FtI+?7;|1VD>zp*4db!q#MQrmvDh&ky`~vP~B5HyAy;Pfo79zZ0&r zLmmU~1fA`d_5r~Ps7(_d|D18$NC*)Isx&~%XXX`qg8Qt4Q(ga{_i$H2X^mZf6&dcp*PuV?|nI9y4#P?Trw%1 zV_s(;>)6>~5O-iyKBjQS;1u@GD{LO^v;PAXN{}qaKG#W@DF8G>2!=HK^|_!)eC@ax zL44dk)*e@xi7VBn?FdQ@^DoAR9ydw-zLWjB?W9k@TH$m6w;LMYiq_of;6a>9*iH=3 z57e?ogb)}d++628ht4n|L-Wt8G{-$xZm(B__{62={+8-aQz&hlA5>U1OWu49Yj%=w zJ<@jye;?y=_@0KeXNNp8y)Nz%oapUaZ4>C9F^@8?x&_|rnJJF(Y+0G|Iof&0h?_;! zHK3%Nv|XnEq_~MWx&6kI;25$iY9$o(c8{9Z-!r|W*eZmo@-h8sBuz^I3xLd>Ou-VJs;<{Z~~_xcK)owkzEII z{VW99+c4mN@7!0I=Wv7D-BN&&+nwq%HFH{ZRN^39BzUghkbWLe5Ju=)=AfltbzT75 zj)=7B-gvlAbCuy*dKuStR@Fm*i6zZ1#r)iI$B;e%cr4wh+0^_&aJA#vI^7ToWrl6O zOl@hf5-kP6TyIMeefhp5m#%`C>pt2R{3}It{f(SAW`wTk!Cx;UD-x*?XhV6O)%4v; z@=b1c$mbh8f~&q4qhv%0pw^(~;+c3x>uE8BfE?PiCc#dP zCeWRVu%ktB4_fE?oq!0Bo2h(0TMP~+Q9R<(Cf%i z@f7lF779X*u7^036=(;4B@H0iNGvVWh+$UqmZ83PM%J4k-3hgO8|fVRF1e2XU3?Xn%Eq*uu81I0Rl|g&1TKIN!9KPfN?uX13*iB3p=_w6v2$$O z^nZ&`?0cG5L!QC0;3EV!(a@;HZ_aRnn=RN9)$JB;R&WdXq*2SW>6P6|YAZ7Z%OCgB zqDAlUizVA|N7RIis_8w9W92lE47tUpP_fNa>9u#bN(+EGJ(&6BF_)tZEbX5G= zROy*HlVm{4%cVtR@w-GS=T){L_$e`XOI-9v^25zRrKk2|QgYe$e4$Oe13Ldq+M47Q z`X&xTx#ga78IkY9F4O$Y zsi>}c-Y0P?p9B^IZ|{8IH5!`wL^X5sSYF;=$nxK>G#Q%G{BO_R`bGk2NHlVDRLzbi zXgM*iLBXe)mO45nrqcA7EGjy>98#ev)8ti?7=MHp3d<`mH?FAi<&>TLHQT5(tZ*6& zPtTA*RZSZj7@4!}oJ7txO1??&Wyt``oYs8PN#;cTVMUHUFzgK4k@N5!&s^I4vP80| zg0D+A+9d&%o|#fVfUaHmtI(EWE9;nRqs5WP2DN05nPMrK;{0(+=TDYDcSkn1j-7L7 zH9m4_BPmNazSl3_uIN5~;hB(dxXOM1o{4=g4*u3mLW%r%lgPhS&K?>6X|g8`X98GR z8xLnU@lW$S9y_E5lo(~V>g9U!n}DWK3pbfUbZz6e=G$AOJQ)5;=-Y(%x1t29OoPI0 zv)-n` zwe@kao{F_EB^hb^lY!+n9=7$igt=)Q)&74?QS8u=+cpmm7~-&Mhd7QE45NuQE4X7 zW|h{3Cro0}`n6B=H-i1YQapTLR@NoaDRt%F<4l5;_=JI($*J_Se?EM8*7Kv6Pf&hT zH+N$3U@Vk%%|bpj)?psJI+$L7!Tz_z77+Z!g*n@Tx_eQ<3{jom1qLgU~gmjRHBlW*T!*|*=E z??*{A!+tSpOI4%9F&quZbciY4ue=`853W+EGP5KGyzf1ToxuC$9y(@I)qdHSpJZJO zDK${BvbK2RA@eS*!?jPJ$6HhPqaos_ro;A5N{jpLrWx<|kOSKBx1gI9KLrhlQ^hXK zql{B?py6w6vHw&Fyb=egp3JRI#$V`_3{P`XT z8!v&Gi^9IdG_LAM5VhB)l^Jsp!xH<~nl-4PNEfF&v*VnTwUY_Jm{9W|ZxHy>*Tv0~ zw|EK+i*WJj{qMe3M+0@#w~eB?d3%BK7Yw&ro~~FNz)YYoHD!Ya8ibTLn9%JAO|Z7k z63FQQ{wXdybSwB5&mVxR@ZQ%8o_|p`GDU)NUQG&%T*&h;U-X-fYrixKDc@~ta`jTX zg!9H|u~x_kZrkrjx6e{6v=DxKHSB{Q~JfJbT9|DmSFYJQ%=e$9}fZVLEHAy&9pdvv(b8`d)uR%URMr&`=LU48LCY+L)FIloE zMsU*<5R}<;-S%uJ&!0z)juS8GLe=H!1XOQd*pT9$Kd_+s!<54W+9-q(KCG3*4eLDj zh20F@Szv><6`0+GwmBO~9Q5m`d?v*wkjVGpU*lIw0!{@DU|*C!e)_2IZq=T(VQBWb zG&C5%I|VqHe$clbfwlgvJNabm5Gm^OL5BQqzzb=wSeUP3N3;9>8IN@vf`Y2DqGGe~ zCUaWe&WC3JUdce&e1GQGFaP54q{EoH3dx+{HrbrmwX{Aq2BR6arkZRViXT<{3G$eI ze|yEjKdeSmd)uIm78ey2Xk??mrR!(&pUmgBXsE@x=IPT{m5ga=DZebOt3M$v8-4mX zXP3NdNOm%*t*C-zT>Y7u#ySD-R>L99hLkjaqo_zgT*4=DYRjo_oA;q47>HHcir-6S zy1oQb%cJ4^?!8MnZ5p?z2}q#`NuV||Uhy-OPV0c)x^fa*a0=5dBkGD+xzN46L2nmIWJ6 z{>l8BNt2kttPl^zCcPFLA*(yi^m|CJMU!is$I2o9WW z`cL0VD?%c3&PGFqguF|$_&7<2tXzzk>=@8f*+}kRF$%h)_%sD697n$X*YZ-E`32nu z0aDNdu)lXQ=#|nJ8U0dJ!=9)=Rv6mUUFa>5Q+l_Y6ZdvL(7zPUtx@0c#DFL+fuExh zb!!n>lq|{|)pE5rmaYqf+E^GBwYxeA%RY@PxjGU5pzYXE=A*yYL?z9e22{xU`{;7S z2Vd)OJFlLMjA>@vvX&IDCbn7zybk70T1DZ1%m;O8>c0Nv9?|TJt9CU_4Ny=&XG#1DmyF zC@2?}R-bTlOac2k)h8()!1gs~`w6fkgS-6fHW{4&(b~N23Qmioi zorvEqHgwM%Hd{A+#E)LjJ7Ypg=pd}0Jhx_s^h&tc=A6ikE?Ya%UJuaS3fl=i6FUR~ zv~zv{QP0EjB7BC*psVD2M`U^NuQrgBwv(ID$J~E@xE>3Lh`Bwz9wlSD6QdBWrzhKK zc^8H&?AVzgd3+aK-gKnt5$2C9{K zH=Wo%M{&ZW4G&WgNJD6(4k7L~e<4v#GGo9ithSUQFisTP7(X-CMZP2HMC*@0=-F$( zFLknj;t*-o*KLs1x78nr`uDy-$_i+BtNZMaRc85V)7?l>J$|hesh^zpyur0G$HuIn zEFbE(r$ZDg1UJ|(n2?l|vB(hb2;Cv=pE>;|{SX;l&(jk?$ZAFgb^@(Y%KED^;;@Sf zc#lci6Blr>4m8dF7M7o_ZU(gN zRb85CnQce$ZcX`jr7hp_&LEtEUMG}_SRdq24jfg7v@^^pczB}pw;n6hXnt()&J|j} zb2|LP4+D-6v$sdb?TuB9E--=}3~_iQ&sIfN@o-yibC94~2`vi>x)BhA~Y$G?1MMd*!;#run&IDIF_LUs_&+Y zKh-@9{ZbGI@)<7N8$|ZL^%)2Q?KK2=TIX~hAkFfmz>=tV|CMjwwi%PsBnJvZX(TW% zKB3o)&StPS_56SwWa+{qizi;qO)d4hyyMf&dwa=gw_eAid=%>$MfV-xKSBfRuqx`k zsdD0-8)>!qzgxO;R#2YxUdJ*6Qh{I7#KpIy4HdAjI>%@FkH~&&YawoTwwMEebmgxl zdc1ZKPV1=}a`c{IhQaqIJ;ua>eq%VD1FAgHR%Kjaqj;sKk&5?5sG@qfczE(XKZux? zr$=Ny;nXzFpu{a~Umdbsc-1*(032)(C@`)3hIVvv?NQ=V7PD&sv80wXbX@X7_GoU1Kva z$S?oR@%G4XcOL$NFXCYG{=zl&B{);8Csb^E*M^C1Ycf@Uv&FnPp6^XEV@6RWn6)Gy z_Qt*hSSWOLUs3^9pD@%FoQ>w6uL$M3vKpl>@p^7!He`w-CdPJg7VHvAiRtAFb`1cm z|I`O$lAKWl&Q}?p^ma{_{Wvik+L18W5 z5zJ_p&ye>DR#;;m$*!79s=uMCdQAhT8XI`eud7|@`^|{9TXujtM1AfsRDE5(Z3?ueG`H+3Pe}$JF&u~L>y-n zt%dn@M^hYW1?qE|PUKzPWI``=tcw)ouaCW@DZ-*S;@`+Kmnd}mu}iYY3XUOBuUCtu z2dsFA=qoNgFL@rXLf*9Qp*UQ!_i7&IU4D_Y`E}kKG>xY9wiz%V_HG`?-jfmkb~hW* zx#sBf`YYT6H#FnUMyZ8JNQ1~=&zR7mVIJ>{MxQBfdVC89)}ui_0{RXacy@m$@wHbd zM!Sz6N!sI#(kq-f*B+mgg^(y!+?LG&Qc}P;5+XCK@a@r}c0HkI`O%z*OdaRm6!!Zu zBCO3r5RfxnDgsM*gLjF=vjh)U-`qZk+?z4A-RkVkEo3fz$XyLNnaXN58ON{mchD_; zeL(O3SkKMv(vJ>iYir>C(qZ%LYJEuH*9S3~{wY#|*jF8YwJ47^z(Dl0EzRZli9+tU z*h>4740o)QS9(dylF1+k@(;51oBnL?&4*r>6d$ii=g0I)X4Hvcr85S0AIG;j*9a8* z8pQBrv-{g^jEelONS8MNgkvuvB`1KMN|e`ACC$h0;4thrsPEF3&g-sXe@DE{_5joC zXjhGWB$v^%5-!uB$9zc2*WO^jn#76)VSag8=TU-$jbFTJz}D=!)w^X=Oxl!pi^>uY zuZDDfu}(2cE(FMfO@s0>uCa+7tYWqh6A_TriZ4uvA)x0quULGwZ&UYCg@%?0U?H^0 zo%^}DZ?<3tOKI8I#cJ8&5=q#}sf%0&OnygNK{{ydYX@7(mgG!;M#3)^4|B}PTZ8vO z8Dqf$Wq+2w7AhaXl+#+?ZrDD_Jaj-?5fkmCU7}``G??huCwrs#8ejL_ObP53b^f}i z{Kg{uQES{~V9P@tU#%R`awFgBkgZ`qd4$}pOCTT*)5PqNHmd+t!WbtP)JDRO`Map2 zcJ_BX>qI++=4J`4Uzl0&uZDeGqlI_g&sN7$=fPr_H@lbaoPSNO?&S1X3QTP%P${$1 zyy7)1_X49^{w9+|X#@-BV53cJ+P!C`Oc zVSbzhz* zD+U+xJ+(H}_5J1#3eBQ%4|~kJnr{1NXks2lN#-nnF-o!2u=uu+z}SOu-x#S2eoy6~ zexuG@OYXboa)y5W-WfmWWSgr4nIPFcYh!Uq^Z-#yFYpFOb0G5!Ofb@K(3;wawi8^2_=k-g`(O(}Oxd)x}diJh>H?G0k656G;Dvzo?+*5-# zDKm-s<(0tIZfEv)3d)3(1g^%sa$`&Tc?$Vc62_GFJiiC)0bdHYs48WA#f??zM3aUz zHLJoVg*+4S0w)!7CJTt63srO1Soa6zdt70beU2^-Y+PBQ$mAjcpR=B87{2@C5RZzL4KmyA(RC?$iz9xh@I~crg>V_$;eZDncC(D)t@~ z(>$V(Xc_Y8^Hw}aP=jfH1i3Y{WmCeX!2R6VwE~nq(lBd8iv~*nByEmY0(}}z^sorb z$V0<81({QS+kU64#wpfjP5-rih3c!BC*G7lAs3x?Au4%SIsy{hppWEZ@Z0m>G2dGoBHN^0K@~CAuA<(E%!j{=` zL+cOyf!=KSSTCz;1$E-MqT!F9>_xNsLXs;@wZ1^w7PT^zIhQ~mLK0xzVb>xkTN2193$M?jykkcVi8y20)0XndM2Y@WMX6!h6Chf)Gax=e;BM9i>1Iqu zRtT`@Dzl%vIxmt-qtknyP+9VT9xW%!R^&lH@4e@YBqDiW0G%b2GuMP!NB+H>hqTbw zRof@qW=MRGQE|$0W2gA~xhzb=n5*utvu&k!jy6Tkz7pH+@SV+W+L{z!eNU*1Ma3rM zKe$Ej*P!S|EliRH8|86k!D6-=Bp?heiws@5f%9Ax`mMI7%eoLka$yMLw)JdB=qd*s zj-6>5ma#%>8LH+Lq9VL;jp6Goa=QSh8HqOd!es6mh#ksEkGMrzP`G@x+jLLy{VbFU zBCP4@?6&JnOw+GZkQBMI0^j?yjd?JNUDvw?aX}}Ear{9+61+#YT;*=l5_wuuZG*8@FkFaY-G5?HV63kC8~y!{#-`}LSMv+s-}bhUjx(Kt zV-K3piS&MYzHABfF6vueceySB*ZEo53OjHT<4K^q=$Qsx^?<^3vP~lSD3A0^~)f= zJ+5L0yrDhH!Gq`E!TRih24?d}khaAL;?YnahtO~w7}t>dlseEnQpZE15tY6ej}v{b&+Gb?xPS7{pf?R%I7t5rLe_{4lN>qkJE831h!D z+lST*EJ z@Tp&|&Fo@!Zq6OQEg6-1PH9x(Bh{H8rnE))lKU(hIuC(rS^^P0A^I{xI!m07CYmCH zcd<(-w2!#;vg#|uMV6wd=xq?Hn&uJQ^xi6^JT`YeH?Y3 zeL3%-p^Xyq`72MSWOqa-!ibw+PA6?2TY7h?AbW7+PyCU@;hYh=&o^`L(#~Fdkkg(L z>s-AdI5fGm?&sxr@nZL&N9DOb$U(DOo45m((T*VuZbq6ba{iIhgKT!bA@TM!PR^i4 z?^BD=nx#Da)>IXmk)e$DiK-z}1>chY#LG$}%6KE4yX)O1m?_#*w;5n4tSV1n4Hb88;|{Db1hr%YxzPHtBn(RQ!yK8ay{M; zk4cTH-0~ij`CJ|~8+xzfan`!tc$W27|-pu2!r=i7n$zBOsGxdk+q{y$nqTQt&eC-rjhe8Jf~0wjPX{2eHNsb<9`k0nxs4l?07h z?oCq6mR&LV@o!``%v-vE)lI^6`T`mU>B-4^<@R}}$fcJaP3f0(;8!7-d8f2&Gcsra z3Y_uo3IR2{d4qgD4SN(d3}pD%Vf^Zw?`cDYL?8JhH4t6f`n)pPg#ZRgObvQ4%!B(4 zjFP$5<=Bm$b*lWf8&NqLPkx!^{E%bc4+A`Z?*k3qChyn%n|J~N8dx^ z<^#L&@dX!@ZmxJ{E)8d_hTF0fYPF9&&Bpc)!`Qp}nFdp^@dS+R+CxHJASzZ)%>Q+I0t>%kic1pY3kuC;Y(W3IV{@W6(hqEZ z;L;_}C%kpDDQWLQSBAu4G!4e@)tL5^bqF!q(Dg9Chja&3nswZ~KS=KADRO7E>0))D zf+Yd?Y2ioQ@$6W*HyS_La@h;od%{fep6QMJaHDW_tuSR~a7Wa8v5s8R%XYMquu>i} z?o9$=Kq3(_w**4m>TS$^ziNUMt@XM^XSY9iPf@%vh9S6FrBPRBH(Lu0$`pjucVJ?~ zm;%bzbKeC8sU>CiMxAWwpv}2OC|KPZfH}-h&-|>8!wm5lD+7Zmz#T%`-1uw)4xA`@RlKULS&^y+>(Iv)EsB@h^hD+ zs!q!M_Y&@TA^)$S*nj!|8^rVP>d3f@dKVJTVLBk3(aT4DWN|)dhLsf2q7?u4O7MAo z^k1{GwEli@f%K4h$BK3{Yg3mrv3Z5Ao*l#d zsL#h3N&83Cl?k8;R2cF9(DvrxP`~frun;9nA4`hRf-Ir3?@LM9!ptCILUu#;b!>$w zlqKs}GZ@Pt`&uMLw(Q0dVr*mI*ZUgv`F`)``8~(;&wbo;bR7NRys=NJBsF%>;Q~^H^ zU`bGa-BG|%`S*J?Cka=eNISTnhLPPEa|14uuM=dm0%KlCx%7gOVBg z<(K?M(|B#(t~Y65K*~Lul-rQ)C-ek$sO{+Mb&+GODFVxhY7Gj!TnjGp{OHbhcC%{G z3uAXLv`_7A({N|HIRH;-??RJ~KZ7Yoj3Kwkkn@`RFERVgdb84IN{HCs?&AhoO766O zX2}12k5@n=B5z}f9e{7+U93CU;dCTWl*Dvy6pDw2zGvm#DBr#H?ZuT2u!i#^Koo)no& z7IAOH8sNbFv$#5}#uck4^R?i2{yxZso-i&dh|7`ai{3WRpr16h8^2ZdM_u$9JpiYv zC?!3_yaSA-n`yijioY@VP_K+u0IBC^s7<}(%~Lo``*v0rQT2&n^A6q{Kv-&VI$;^a;iVv zz&JR)O!{>*Iw?~lfyq_zOC{sz4na*cS8eppjhuU;fskiuoU%8SuO9C_X(N0b3LNpz` zzsBK6BhJ{V-gj;NIJ-e+{}D`254Zd7pMR>4Ln;<1$M?~Vjg59JBrf;<`n+r|F>V86 ztX^Kf-E+u1V_eKIy;oDGT${#OImhDLs+y|M$WkbBI#_7F7=EmetvxCf5SU|TVzQkYUglsI%t+fzD?646AZ8m)HDUgKcZ`zz`pI#ptRTVz_n` zwO|hXG|m4`3k?`_R)@ZxU>Vh-Qn;s)!{M(xof3a=)1m?%G&-hK_Ml#<6v%bdavK_ z=-UiVoxLdC-`x2P%WY_!W>SV(AFu1A~4)(O$o;n*A92G8#c{#$592+%R9j-du`(cBa>)H;e=}W!)XqK zYP+(dwcnXu`g^srmL^2EXR2FCUX0;W|+Oo?S3>_9=;++M8QPN&^8n}iSF1g!Tzf$76 za_F$P=33`9n=5~OSP6#WWpJ>~O4`wIl`U3PRc*A_tZscw#cMIta)V&#P_o<1ifw3} zQDhb{w#TR1?UP)&2=?)=^myutHf(*S!>+%?^M@Vv<;@t7(PeU=tV=es; zqPAl5!+Dm2e7EYnvgR7tge;#C+9?%#WFBaqDqxtUmW^`2?Vc0C7kE-_dTbzXq*|<* zK{{Bo9mafKT<|S{Dl0daORYGt*TEZncU0za6%_>+e0JaDYWiXoC`;x^gK|f8Hay*Vp;|2@7|o^__UXL!4Uq1S0yOjNh7sk?i`NppYJa zQGm^m+~+-pvY2f)=V_!8qb+;-^GBa?gwS5H;y6@?jj>5@56T#tDuJ}Mo8m5M1@?BN zZ_v$8wf=gv9weJ@_%g5GAfPAjsPiqbqXievh!Dv2Q@q&ox>L4!3@IPIqQ- z6>o`WC$4@IcDRiiFTwhi5Xk(Wx)=mBK88z)^H7qY^o)(``S|(lC~j*hnby)!B>qbM z?&5pAm9$xgeUd4EGhVc9PpVrqHk^^Njz!AIfj8JRtjyDe_Czk2<;4Drv_Qi26*zF6n}!nkoSgP%`F zxschN%%))45<-XFXf>pntA&DC=<>^qG!Tuz)38>|9UrYG1}BRuyr9@{#rNOlT2{Bb zivDflp&w5}ns}A>wqo(^?sAG(x%I4*s}k!?qm~c3xXk(Z9V8?MqI9uCY0aqxz086& zIiD>of9ljoE{hu54j|khK5P{S(?fnkwCYO92UFk6=|}?q0o{BE5d(&qjg6*;O1GZh zLX5_XJ+-eqQf>Ejj4<{ku(3(G+*_AFfHwH8IqbED!%N-WYTTDCSaC<=@^w#N1fj#@ zE5?pK>8gn#7!s+M;O48-HpPz-_@oYvF%Rby1g@*p5$xgq!JA95=z65r{P?n; z9q#6v&`>vg@9kZIo{5o;QSZ$ihR#9ODzv~{cFIvr{qeYbMSI=G!)5clOUF~G4pzrU zFUk|*;fI~ad^c`9;>t2#N;C-04L4njo{>FRn6B8E3SsYwYj6o76jWXP{ynsMqB?Km zU>siNsSynq@oXL#^U#CWuIU(NtUSX}l6-!paMj-p|0}&|Z&-ZkXHeY8^B*f?wLxx2 z8)|}GSl`vVb#nOe>W#3+Vh=p_-Rtdzy}2PaOHaqwUpV0SIL7yuB3*`J;R82bzn}B- zbxoz9o3|Xey*2V~Z;s4;*i}7gmFaN6NWRZAx}(p%VO?~I1jK;J{%5HZNhbV{kRmo; zv_KKZ;eOUar=O30Ggnr*#%#iXZ;xBx+Q-xpbG0#7LR3EG@_xz|q4Otmy~oF+agLO} z0ZZgVJtN0ZT6USm!Yp&2WlFlCgAbl`=j4qsaJh}~y$;x1Bq4Se}glHkY`e~tL~gSepdi= zYq|bEn@IgPD*K;NoWj3>sXs`j0gp%g{pa}qM5NFE6ZQS)`2RLJr2U`A|0ja|zm^~S zik4qoe1Pq)WlI%_e8*`J?mW5sg06*g=ec^|xt8n1|2Y0<@2vm4#{Yjs(Eq_Ox#SBN z31TrPARG*3+WJ+k*+F=fUQplZzr{i%2CA;c@2KRBGcj}nIZwy%eB-F;4n=^bX8BfT zYW@b?R{xB#OxJG}tLh@6#n+2e#m#vfIJ3AsgQoXJKB!pTx}`jPpt4< zsy1u7)z2XzOwX>kCp7L6G!EOTHOOTauPAkau zaeu!ywyVyRFhsT7t;`FrgHFiSR6BRGpXYJm^oUx#P7LEoI&Lz2@m?%$5pkYTZ%>tn zKaxKzP4SxN1-%Jgo#m4|SZS(WuHRo=6KXgpndv|ovOW<}Y+78jOR}J7%4YyEeBsZ{ znwaA)dKmr!pUne~tPz(`rKyb3Dl4Hgj8f{Mjpy;$K|@aLIwkPX!c(6D$Uq4}e{U{? z;L@2Q+n1?AS721ruQ^~z8gw5N6d>P3M3lE#T38Hwa!Ys+$_DsA^%bqfNPgR~42b#G z!sKu{fpoe#XpBMeR0!{C*u$mErQ!rJEvqG#{k)iX4Bw5mgM^ws^nB>CWB?2*(*b{T zLsPVaBkSa4larG#Gcht&LP|c@_4YyuqcsB>lKuXt$V9w0tVX?;>&kmg4i(IhNB-A{ zi^;%P!#tL12CKFDGu%yTBC0q{+V2CK%08pc)bkb`O*F3vOq1PbMKS5Ih@w1$#KHGR zzNW%)o1idG$ZuCIoK?JI3}*jr{-=2>W+eMvw^=OvSf_@vw}tO{&Kvt)rT6h)PZqO_ zi}dzyo2TPjt`SKx$=};f&rGSazW9oAAG79I5bnI)7p>ucTV5VsG4AV)V8O$yt3<4aVR1Bzx$%h&G-&gD&|7nzIQ%Bu4+1y zOnBa#Tw^GlM8v~3>jDLnntZP(4SZq8oWd|Y7Ss2B`-BSHJhmj`HFa)bt-uDn*-6FK<)rc&4Eda@&voNh*szYY&CLol##b68=n?XQPe>{a1YKC+?WC%RQQ z%GP(aNkR8I9$c-8r!zC|ipg*Pl=7Y^H2K+XxzaZJpc%oB-(~jl;^SYHRyo^YQ1SE4 z0SA2%?IlN^=$Gl%v%`LtLoy9Y<_4Fl@0oOr@64YgI01(vrfpcf zbq{;`-1Oj0h~IE3-9{V_HPp{YLNExweCSP zesC2%84su!KJ7t!vY_AwsW8dzLdY_V-KiMM+b}Jgc^UBx?JL_h%-_bHjh{-3 z2Io%d`0aW`8XgX+Z32(%FWh|a^i00sWsmCvG2}j*eR`1(g{O|p+t2Gqbv4vJ6kqt= z0$gEsc6Hi4&*huNij8kqZgClj?#2YZwBi^xPwOfb{^&+9@NOBrH6`n{p#|1Dp)}XP zXQ7~?pW=MBdP2s~N6P`hhUXJXxbkp6&xV&;@O_D(KF_T`?S<1mVq~5}cO8VZcOwqV z*&2Tf!Sla;t{bhIeMP+b2(K7S-M)q(hLa4nc34UAUMkL_WHnuq>P!?}_|Vo8!abz& zx6Pz~N4}jmno#;-O)KKso{QcZO%LN3Dr%3-sKzd{sO+~M-o|m2wApjg)dVaNzG41h zIe!j3DOe9(-DLw}RNZpVX=wgCuMoWwuOwjI#Z%o)`}`9nt8ND_j_L-q2*#9CtLdRs zjz?j2%4<@7C+?mE^{_jmtW2@7ay__0|Lu7KSwJHRJ6@=tA)5t{ElQjxlGMPyoLAn* z@E(t5@fjDx)?V_Md?jzzWLfG^wp2_jVuxV5cs`*1u!>!0q2_o#hb8)0#AsgEOMNc5 zIIP=p+ZmrBd{s;TQD6%*&&`wW!QiU1zgpedR$L97e!aTpVYGN_&Vr>VL8-c>0faF|xc-?}LmWi_#!Urn((8sVlb zbg;?k=n=`;A7>c*8Ky&ZJs!N|v*m-%2)IK2Y{8%}PnasxkNqdjZDK=nJJxuIM!<_lK7~LO|mb`PA?^I{$objYB;2{5~VqJPlPbnOS7f9D&OBlG-Axr%sIwrDSD{RFs3ah-UqkQqcA+xTa==g30v*Sq{kG2_mnV zWHO9BUef7{(c|;#RWOX|Vql%_IGq^$|2pntV^AKf)T)3jGU<-a*|;}lQwq+Y;lRC^ z8wL|s|H0(vY9&XH9n6TdPT|Lf^k@*_mit&B(RTt>)% zYd;~QRiARNYk82y{HJX)b;9He1}q;^+?DM)N7IN3T#62BhGWS9BWCSL=F<0#O6IC+0>X z!Ju9?dA+kCJ8-uRR{1=9ZRV!VYFL5Tt@!7263r;_Mk9JFN$}90rVg6DCZSUYOg}ZR zo{WUVUDbhQ9RLQTVK+?XtHRhNKcPqsE(A12KRBaN68SGK?1*W7A-ObIEE8J1bg^p< z3=+BQUsD%Omuk>&PIc(-Zs>&cO$6_&t=v~6V0W2WD6 zMc4(b9&rcF`cmV(aBpL-aAk>iiSgv3FXy_x{JYAnctxjU`HU(cRoI)*C0h>MShy`; z9+T*Y$f$ac`sxv%DxG?-+{q5s!g%LSoklLRSg?AQJ_htFrmb*hC}l9Q)29;=a9>Py zE_ebf-m0pq>dk&bQRJSBbiRIZBdVv!sK#w>Zvl%nItmvbdyd~ZINEN&qAdGu`{_W_ znVi-RSa*hNxtHVT5Pn#(kYV~m$1s#fdG$dHbBsqbr!wuLb)0AxrP&P{y#r-4Mp>IQ z4Kf3UfJW||0$=r9;Mf2z*VRS0uzRZuTXysw?5=Na^gLR~%}y!#{3$p-ZM=z2K7W6y zrc>~Etxd>wX{4&`voeFokB*LVYm55F*vAc?pp(L|&d?UJ)!REXq9X+h76a5sKjWLP zwQBtB&lG2-xFfana z6B`?w^;5?t7+~t!`9OLmq4A8&V-NVr9=3&CyQjiu@#9L?h=j(&0ppz6kNdowF-}j; z&?`@M?mYcO63#Abus!CDZD;ML6G=Rn%20m2sPW8fb+TEkAa_>|n3fW7 zo>X%BCV9-v$m))*rv7BL7yu@R-gqrTZu>7zj@?>3F zd2**(s#1vc#qdHFHJ&outRK(tmy*gawoL!)7x)ymP1BA|kTy%+Q z7OUG(#6u^zQ4WX>>Q$@ve2B3DA?6Fi0{KVnq(7S-Xxww@6M=q=s*`$B8Y!rR&!It=>TK(F!x(>F4QJ&Wg~F532V zxk*hr_|MGj|5&5RZHP#tVN6sXedN0qJ-lVEd4Y%eHyw52{lb=TRy?}@_QIX;C;J2A zG1OCuUFLkS;`^R0{N>zZM9)fKy7cvzmi&rkV%qMske~JX^MLkmJ1Cx1D^=!1d?J2# z-QVI6y&g@;;nSsS_%(ORLX8OQ0KR)}O_8ktBj@iRlezsit$we3R zW`0Wer<0Tsux~D^g*-oTNv%U_Ye+ut;S)+eVNpJ>e6NsgXUIQ4DoH*AaOsL1kRO1p8Qq4*Yr7B|f@cQlXUi2jUWg zE#-G#eOISmo}2!F=smr|fp} zOlPVCrC*sz6FCJOx!Gs-^GBuMV`1|CE4Kq$RM9ZFRN5~YaF?eB^EG5(Xs5F2Z^A`MmXiYM650{?_h~VMD z@lflopTlEH&`Ld%SS{!S5WhWD#!&*xC&E^#>aD^1SBL2e(?5rp(fdenf6l6E$@IYo z3~x~$UZdP7Ws8pAqGY0;8Z90?mljFi`%_O%(3=jp&UauHTVVWTXO#uU{zKcN zvoNe-=LwiE>Snk|aL2)&WqX{tFteR5JP1KbAZ`P=Kk44Rt(- zkULIUn-T1Ocbt@c;F+2yb6w5Eh@Mg0^X18YbjvL8+J075Cxw(aX;Axl=ESrUeuC$O zp8)$`pxWx1z>+>{jcp%_GR*lFAR7y|FxD$?z=oz2Jqa>7E|OCveLevQFaQvAnJbCg zCXlQydZ@M9xlZmWH7dof#j3?_G_NCNFOpe-b`%yE!fyP@Isll81ud%tX|BAQezutE zk(y&Ri3osb!p$`V#tXXmA(fMhb&1(vFt8H05GRYy3c^2$V{c>~yO&0!w43$;U#9sI zoWNBn%fb8?p8JbU2;^xIk&J?V<e}6MfdJw+~?b(423EvuLn?f~C~26Kj}5eL?A$6g7+e$Bp>bf%2vpLbuQJEj{dC%Huc{%Uh zHlxUE%b!z?m(!e(t*%rfwR#9Zo#MR*FZYzGOQ#Im#E1V3^K&o0t;^7(np9qV)@i=c zO2d@d2VjJ3$X>28r)Cz}*VEoVRSMYNY%8tbT0y}td29I8cKfRA`A#Ous&EapAG_dWh<2!z&l}TD*20*_JxuPOd4jlGYQU{Ez^%3QA5>D@qb?`jdhqWIyO{!VqUBCP`3xJ{^NYT!M{CWhwKgS0C!j`pMi;bbd$9b$_D*m*+6*AZ$KlZz0C3f*cgm%=RM!GuE2%$yid>d7NPzRpF6(8_ za<*~Z`tGV*iE4k|n+>wNbaT3{?j8}A56#F@g`Od^?lqOc7Pjf6X;>K>C2{nx#821l<~kW0ryaP< zLzeQ+x&9tHDCF@=l5Zm(qC{j(%|%7qcUkD`r!BK_THm@%aA zO&IF$OnlDuY4HUsr>(OE} z<*nuP7*;f|mxrJDX$6&jL9!t3mF-^0qq({4)P4|?hysFKc5Bd#kDuQ;PQqA8Nr|v# z;qfm(M|c`FR`YU|=JDC^mDZSs5GT@q??=0#GsA%2-GPzwa_{!U1I9h3Xh7Ba{`hgd znCx?jA*oYo!u;c?te@dEBe`ZEvY(GQHA@W$uIGf|G8S2{QVQyePqW)Sbamf@xTHMZ z#gO%aXsg^3W)O`@RFwufYyMI*_pwzIw)O{!NmVmn3#+c$1qRUER%{O8@YUZQbx$=q znvR3_k5oC^k_EVrd0G;}O^)}1={O1l$S8+*!TChsv2x@z-TwGl-bH@SFDS?jC#^^B z)C!heU<|ysmt0$X4!FpiotzfU?ov@vx!@2LL(;7UMufr6Qpljd&31~j?z(o)L>u~L zX}@uSnb~%}H`lG&vNL7AJ2Ry2_Q-iZc0n$#X1V(+D!6H3VPOzVali5aAw-#t20e+D zgAE@BTI-VOWc(xzj06+?1siW6%__%4!UxXze3#~AVSQeB6%=gaqn5FVlS1h56MSX9<(`dDf%!-P;9A;!>#3Uwqjf9)XM`MLO zs{qYE@LnpP!;1RZ%<@=W&1X-NuEz_&`! z6INWto+*>rDVZxG;~JMpP%00?o7f!0)p5eXxdx{3(rxbJ$O`+0LpLJnk4C-vE^;(M z=Lbl0*=Ngw6>f8lh?Gq!7AJjKo1cB1(t||LipahG{uZw4h922|IhJq-7OcVgLVoxA zBRlX-mDGW}PMH?yBe7Fo4-R~iC~LQdZAYtIe|Y_9pAMc$-&IdZh)Vbz1Q1@}Zanmv zMc%V%T^xJ*KixG+rX6e<-vZbwY;LE%16;JV_;K#uTNF!A3DP-Ku0 zNl-jSSqUSCGgmFC$Ni3xG%O-HVy`?(YI+My%)isKVOoFA&aTcgjcwTUNVt-d16hKo zc)GX{Zfofiqo&}KsL3`|1WI4T%XR)yIc+k_U%VSQAMa7eXI$0({@TX-_tFhV=4$7^ zMzCFbl)t<;)D7ZAK;*vf0XZ&iL-*6q?j-PWA9Xxb*CG-|glvO>yd{m~ z<_g)Zj_J&^uWbT*uYbo^7h`%>*1Vu|%){0_Gf%;iM1*wR3iv{dH7L%|L}PK)u6ab5 zpWRMJ+q3%c>3*L@%413d1LtHO&&expY>MMpya^(SY_!pP9=pg0 zUAF#`s7Eo3i5cIEnQL;bG)8j&%R;x%2LrCr2Y=a@LoKWT_R%=hJ)6R>a`EL+@D--22F*8iIIUoc9|+8J&(*? z464ENv@_$i$ojX>%aHdLCP~S`cmoL{Ez=eopj1ltSKTS?yPYe@R|b2dri=L4gYHek zCaym2z#g4X>c8~gp;gL&Sw6^FXU2!>h1c@s2tNO_xk$KjZP zsbH7+D_8v?chgp=RjDC=2qD)09NafMy(f`I&eeSpgHy1wYU z^O9JxgVb6rogA!$rLSvKv+T*{C-JUz@yT>U1r$g>c}~awoQO|v&Jvji<&C8o!PDUT zRtgiBVrD6*07^PRtBIdCjGvTx)D>7fDL2O|0SyfV3I!IIUESotT_j}5sXEiXbaCQB zAHJ*jSr{x!q@c_ zh#VLA4A$8guptA;2V0p?h2fd_G928w;NI!<=tzjZYG4f`N$F+qR`CsY8UFI)EIOc! z^z?ch|8lr8X3+bA$@f*&N|)rQ2A6l&_5gl4b;2G7cc-5vUO(-sXe^A+xLR9M$T#OF z4bhKc2G2Id`1EiQ`AQ=y5(B`b3g;KzjlTScFISjDQ?p*Vxo4MY!^a0mTP(;mvTuFh znQ?6-izLnUA0C;eNtv@$u1Bi1%@|Cs%b%G5mo5W-D-m9Fm|w$NJB*Tfwms!ZBW=f~jH@!4deA0Hzgnl z1GYtPp|16_56^#1whu){@;My5+e0_9pg$qB|5jTJi`@f&sF;wz?5RkGDZv19UgOl! zzS<3@9a>!RHxejij-`zFX82@AlZ{_Q?kgLa|JDm|DODF7?}xh}7XZ-5DmEV`vsh!- zTUFNHzpn{(%?RF%z9Be_BK>pdyqzqE-T>6vz1fW|x77_oJSPpAJLvq4;>>F~9FM0h zqp-zWq7Vd7D~}7*kIPu@VJJNQmmm!Z;aotYSnrUR+}M+PY;836c<) ziKcH*s#%5g%WpjlVH%Tt{1Bd;vGckUMr6o{!Fwm$2Ow^ZSpMm{NVA*A&J4w4zQ!0W ze{#Y^S~)Zex~sMp$N>ZfE~xOFf4mA_CFJ)3Fv*K9i#zGWz#;7NV4EhHf(lUOXo7-X z@&g&q29M3D{-i?DT38=hRW1}b1m9$@s zQezWwiA@1(`3kIMy;gFo`1-JJxi;6BDUN$;CCAy$K$GcDKF{YoyEfzL`VuWJTQ?rg zUNhVkk*qV<_gp}Nw0}eh82^P?w#45s{2(#$uA#eost>?WHt{)Q7%<3_cgg7x(*3;O zb`mj8GY)Q1YWR1RDxM)>V*?|qYnV|)1~mVg*S2bLxK+h>O?ILSU2ktShj0&ia_gT6 zYo9Y*4h2tmF7c)JH~5rRnZt`^Swe_QmLIR zt=W@agvTi-iH|G9tt=8MPXQk1JT)d_hW{AV30?V21!xBz0PzgNZq1B*1msGZ^O<1< z6M)?9>o#>YQsqWz`E_@snn25zk~^|1pUB*9O?~}0_oc9n+G2D@bl4zg9WP`O2S?%2 z<$eIg5N?i}zDP66Xu+v8F#4svrPTm;B`GZiA{HX@t2yot6AMS?OSKl>)z)>!e$j3t zQcx$9M$MQ=GHwv^hH1_1c@u-URS}$bURE9)GwN*U*bk^;<&sJ|t4}w-dZ*j@CdCbUz;A+ADZMR9G5Jf4)qN zi-3Ckz9L@<=*Kvnm)+MXE7gD#V~7c8B%=gh$EnnZWNVi7$a-%JCAWnn@r@;-!{o>9 zaMx~*yDFIQo>i^&iJ})|#S%Brvm~?0fp@gxqoXqe14-Rg!@|OJKrQIj(&z&E^73}W zaUGI~I0}*AxL&+36&J0pkef4BUecKUEXy1=_9BNmC zrCVCY88yt-Pq`R_yrWj6YdTTJ(twqjex)wYI+Gc^=E_ zUbC9`aMa8D9@~t~nlgs($h?Q=-Z!4)dHg>iwjwK!2!dYjXlJVIMpr0lki{5KFbJA` z3Aap?UVK)HK6Ti{ag-Lq?!{xJ+0_}w%vZ6O!~OM1j-bitNbeR`rfIfVY=QQ(2OrR1 zk&5Y8!zpFdYMTx8HyjLUJiQLo#mmecPX+!bJE29vqmA;AjH-R zXayn~fPG*R!hLAX&vcV=JGj-XDP?%ogl523iVb9_G_Icc7YC>1dnHFjnM!l43SUxy zkQO~k4SxM1=}lTgG`(=VbZhwOvoB&BP>ox|=?`-&?isfA<5oc))1!-=BBnCMVbq~I z<{CkStCv6ljwUdJujG^}k?aM;0E>cVp#p(Ov9!Ok4|03>T7gZXBInXRtW1fvCVl)y zarU}bHs5Y_F36~QmIvCNrd>bNN*{D1FVGaNF|$&?zx1)KSFd4yb$_`5tN4PVPZut! zJ@=)&q`?W>|6Wkfz(WYdD*IgnA^-jYNcLr2yp&RSyPIL8m%-4eTK#eCzR0!t%bTHA zyD80;kW>GGvyog>Nx0u{Ca_3T(l@)iyIb7F--Y+q-&%~Ms)#J4NW0r3G?<*(NV--% zg=urW2!egTFFZ_V4~k$<>(V|Pts;?1BBoXW;7kFsP;Mni^o*$!r9j_}ZWUW$pLP%> z5ubP*h4YC0T@GCo=xtG6=5J*v0LeX-xrCvM^~hcd(sri+ zSTq^_^lSY`wT()Ruo(fEvPM-B%Rwt@yE@kn#U?Lp;}ZSi<$cw7EPg5z7DA-=W_=RD zSmt6bgRlsQqSA=9H)y_+TqnCVcl2<{@%@jfC(10FA%L0F^#|{0=)E$oF@pRFu)qI$ zbNXb?fw#Ae>7~W-K7m&&!9-(KY1AN{E5X7W;i21{!yW3awyk!oAy&z}$X)x-wg$Ru zp`esXp{47isY2LBa|*&wd=>1)Sz>ZjM`^jv-4Wpt>5+#qKDnPlQdM53XbcI(xS zw8(d?JqH4RIp+t|txpl>`2E$a^JwqPL)y*JQDFjWh9g?VF0;7fDB~fA`V+n_O(5nQfa{ zB)q04Yfr~TMF(RmQf&Ot71J|cEWy<~plPDX#6`slX|Qqg=5-`Cw=N9^zzM;t#K1|d z_E2k*DLUpB67U$rIlrQH@g6bp;2(NxX<^>g3pKf)=d@t&k&Asl+|Dit_Z7%e!QNG9 z#fmc7^O5$^WzZ9|Lli8bp1)o>!H@5Oul-=q8LGGO)a8hO?$b!tjdKDPi=66(x>F8T zr9N<8X8&S7tsYxRBe6%an*>WS7Jc$e(O=* zoMKp~q}o@ZE|2s)LDC90Oh{j#6CJxPSrMOZxi#M6^4m34rcJxyOkzbte83FDj9c+9 z6wyef>!SJQ^~n&WnxU2_UUG5~dVOWEaPQ!4U7!>Y9&i`66C=j7%-gWnuP+pQgoX2O zb7%w3JqnwOspP#5BD;AIqgYvki@s@?cl33Qut{!s8e=qfj?s;7!Gz;cT&|ZL<_Z9~ zxTvt4Xv1lKjadg!Kj!K|L?X#lJr6^9mGwb@MMIVNEA1?O;!~iwf_RVm4*HA!n;W`) z9q{6cE)5!XG~r80;vL*vSVQ8*+?`XmJ_<5iYD6vjFN7|}5VqWsFO0Rx zmB$RbfpE#^P3>NQQY28HpSxO}WT*n1amt=J47}>kyJA>G29 z0%9qSZrv$g3m*muHK+r8gPY{}oxWWVUb_#XFlK=-(TpZPBTPt_`7waL& z4G~WD)s!!0s@<+`N5*M~eG!NBqdGymW505IeLl>;mF8yhI7{R%e*GrOk;P^~t`A*W z0GSBP^gM{vO=VXBm`wbIPnwSGtgc2gGSN&je!TxQo0?F@>#X zP7=Vo7-?YAv>LBqAjkn3`)LB_d8l->&CPLDD4#Y$5l~_lXsHb@)K*P?fJm9asyd0E{!sANfxrp^x8>t1N}m9N ziGQnhB5bzDXhJr!PLh_yiWQg$w8+)U=^G-os7#fC<=s{7@{hDV0V=n)c6_*}tNXCg z^Dt>KQyItdyO$uC!XJk7=<@LEuzC`wxFRU->xXUw0%Ia(2mONidOYSgSV(De>TiqI zo<~gkb-tifOkV?2-k6Fa$Pm8FyX3Y~3>O9@p44!$Xnmy&_texwYT4F(G#_ z7d35YSPLDP&;_H5E!=a&gFs!6u(P9(u5BnF!#xwmB4#FIM1mBbmQAKjEe z4z?!UG6HTh0s=?(_|@K9A?BPAHw`ljrddlrn&u(x)oy)GTT65@92V+`{)H}&7^c;b z@{|rbQZR9<+d6wlFH=9?f*4Bw{>}zY)(eD=A^M1;?Op@L+D|&@liHEtIFRQ9J=nDf zdMUa4wT=55!>CmIrBfut+`TI^LNF^;+C=(5^r8558O|qQsj!v`2YiU>vTvdOIu>Tc zmuH<|lUr8D7P46yS@0d6Q6#+WV<#1{O4)pXfb}y|vn5`3&0}+?(I|^NYmW;(U9gct zs`e-m37r%;Xv2Os$MCP>m;tmJ)oF=dAT{3((%a$v>>KfSt|NH49y+}z&9wW?=x z|Ddn>+Juxwy7)z1sD%5?0&h8!sD6~VD_z* z{L0K4hEpO9EAKM+St~JI*`(w?hbtN;(lDBZptuJ!=%@b=vM1*GcYUB)pZ{@&(M{_} zC&-)6J+}n?Ga{ABZ~vub#&9tlAsvLerDf%{SwO>>@_{_NLE}@oRrboO2BcC2@z0$t z0#7o!#^us^O$=GzobXHjX)quY5fx4mUd_= zEPkS>%AykHb4%7yn10@O)v&QZO}}E8ma~JLfqZ^)Ys`)`HoLL3UH^QPZR&V(x&UUC z0+Z)9(kz$q01?7%SqX^*nzx~9UupWKg-~}0a#FTlCqlp|qYJ({2(8$X@IzCTXwPO5 z6TtnS>HrY5h8Ora6&k0Z<Wg&7&@Dt~><-U9E->dx6|vQSQmf#tX#y{cnIWf|l3DGbl<0N4=~RvC7ioECQ!(sl z<-UKBM}~9ceXvNDwnk{z`^n|A!|>7J<3Sb_8cg%AUXRzRvGU8#Jt+~BAg>Z=WlNWV z{{^hr3s%MnepqFVX$@iIgXBSgQqS$y1YMk_iLkfan0CFg+H3jZfRFKs5|*-~i84Dc zoLSrYt>EUtZ1O#c!|y`jrobpH3pszk*T!X(F!*K$2ewhPKk#0A6V5b%!he_2?1$0bq(ef>jw4=~HIFXKN^~D_sNi{a{0( zGQ=1Z`Qg;T>ORtWZCQ=H51#ol7G&PU0%-%(6@U+(baj-qDNF#eZR7t_1ebQCs{$2T zAbYO{f>Nm{5;0_H+qhDT&9H{q9G)s!LUhTcr#9>r$ou!7?@9R;H5qB=?ScON`?OV`Du6-;;v1Z$Goa-LU&0lHUDOmSe!}8NF6U zSB#UWtXYz#mpW@Wad=q)jR&&WQEcLhN(?v2NlM{B+^hs#88Hu*jDotT$3ljmUyYJh z#CWfbocVY)(r@sWsh3xE(y%ABo43N)Xxx-;|Y1W>rp=bFL z{C^&`nr*|8uBiA@BWtB5`00Tdo^=YBFQ%jksTcfmUc~M*U7#;qy$!KTdZ|%Rh=XQk zv*p>fyr2kB_$JL7i4% z-IjqgV)#ZaNZNKKR(Fk5I*PS-{@CB`^s|5Q6148U+a^|qY}#6~`gRquZU>Dqbm2u(DBDD1nsU+n?R+im2LZvJEj+p0%|pR|=s9xL zGRa*MH&%wOq3{l=$tCG>VOyP<_*2;IJjSTJAnZBQ;ngFnUp9UFyZ1T-^?! zPOsxgDN_GSxsCXwKCZvIInWKf!Jh)Z_RxO)w5}NLT9CdSo9gG2o2ddc-pXm|>PKN? z6Ql*}QoQCQvU zm2|7UE#P^|K)2+ZZVe4xXb~(~!=X#ST4nbF&dj;tRRE~^dy_OQvdsD?RI}`+H@W*6DxI_Lgx`wQsvH77BuRgBYZ=NOyv;orH-4Zjz z5VzEbD9r!^1JWJR&A#ye>}T(H?=SC{y}mHszkAKBb**cid7Q^VW|7F#E3hb-@qMYr z17lomES)|^p|{PavMM($Ua&geS*PMd>;DXZh-XL2S&Vb?M#K3y%_A<1=)B=$k~tC_ zNhv9|MQVxiWm#=JK9X023t_u~g%c?#>Y()gE896xbik}7KVmn^12y?a)3s$9t^U;u zwiBsho6r8YwYqN8>mQ8AGZI*;^3pLZ9v|*2Gq>xS28??8nujHs22Ma9i&%Ua*tu)y zspU`|ePDI%#0v?V5D$pSn9W*=KNq5)Kp*JFPtX)mV>xzz*)6MvfZa`%T&tN=1I0Pl z<+@LrtKU2OXULuHkNmIms{qm0*G91vB|CcO@Q>Cak}~Dk&+EYg5gMVj{R4*#ijfdg zZ|vtcp1q2~F^FCL)aR~fEnLLo!#A8+w_4W+;P~dd0fmqhu=T6>odmqLj3#X}OaWR5 zR^;^;E_D3*X5E+TUc{FHk|!0N&q#polH}cCfVC;yBOcC)l(=Qv?YF;@lPLy@%mUNi z()H86_As1(Je2QJa%JjGR;IPFwM$+H%k?mDsqZNLl2t+4u2MVc4Al2R?4*94fM&W5 z$iuEHqayyc%#DuL%sszsKo)m`|J*er%{R*<<50IY`y(e*WRuA=*Nc=r?alPg7O(lu<9Abeas!X$Pit+%8o9%GpO! zwVTS##&$9;p2<#9S5aD`0fv@9kJ8a@4+Or4O7<5K5*vw(8^oAj;+dcDUZg%yxRmfa zy7AO1;L7FPFR2Cc_A8zr^ZO5i&Mc1hua)dK>w?h_40Pc(6+tjq8QR>?zyMxRL8&F% z6)IT#;g-wu?_XMIB&81fF0!__1Jzs`jh@fP8f{H;h-NJx`DGeyZ8aiAj~ZtN&PJyt zwSyrUSOe;~L})GA5mlNW{Eq%@;%4!L-B>zNM4z8YLe-DNw>twpD<3|R8)mPc7&$sR z*7mF$`BD{|lGz`bUknKf+GzO(Z28cdQr((;?e|sTgNZk)+&a^(nSSX&U>)b}$`Bpu zg$$}iV>jKFfuHZ7F03*i19$g1AusG2XSTIYX;R3>s!79Nh!9_>4?M$us*{~Hv{F*} zlCY$b6gS-G!1djZa8skDY4_H%WKJ2zB4s!nmM2j)#>4KD`$>Vq!oFj<_31(`oW(%pgc}=xyxQgv~OO9PdW54f=;gEj+ zoqbW!Cz!(gRy`9AV_H1Mb2XmY+N>|WrTd?^t&b%0S0gPR*(I5661oBm8K3_uxhRzf z=f$(l%<^~HQL;}3<;*x+D$mc)!`7L2Z)0*0s&<*CG_Ap1!~!nKos<$7N1V5rG-MLD z+|f@%Z-;XI$Z()#s;o+n_iQS$@3kZqdu5G#GvR=A7kW|#Eny?zV;w<9Z&ugL8Bb`} zwy4k;eWm0xwAAi8%iz!HQDW#%e!Kr^e~(j&o-9g`fb=o$cJ$%A81Jt8C>OKu5?jgCSLs+3K}`8a zH3a-#=orLu)?0=u3UchOqdrcDq{^G;{i3)_4|#>X42$HQ;<`^~<=?JQhz(Iw6zlLI zi2KDlM5Y7RotI&RQD+S-s@mjM1hlK5u79w{5Lm4)kRX)#?AkMp&Ra0}Z z_5VDpV<<-Kk0jcxoa`$R@X?!jcjQaSx*y0Vuj&O0pF}7z2@F1d`z>y)v98S3z##Qm zn)+%u;pT@a4P7f7O3l-5c}9BWmF;F7k6mIMNiDh;pUmiD&n-yp$~XuO+~t%gb^9of z2*Zm=Y;B&v0)9R~ZwX+7CKXXJwv?N+VB+Cc?^XTh za6fXi9-DWBcqyW4sKosRE1tadEY^cVeoPxPO~=#sh&q*e&&_W<#*wU}1ve*6BBzkc zG^ngqo#R_kGW_TFfG-)bDnzX7c7U*4wh1QpD`LI^&)BgS8P&&2p^U23!nD-0DMu_1 zP9$H%#ny#}6_I({mFdFZK7y;Bv`MkT246h{E{47pY_o)~;XB}o#fU`qde2gM5jvKPgE{cm@p{EyK%2qWX{(zqG-}~j-%T}L!VcnNLkw00D8@VOJ=sSpx zG{7C;ADuje{88FY@qj^|&LGbiNpIu0Q@(G1T1eBkBXcF$DU4405I+&+M+|!>B(!+D zwz2{r?qOz6il*f3b-o?ySSD4^VAAktd~zK9IP?cB!@y_;QTfgBV?lWXMXe}BeS#*0 zJm_w_QU{&D3$Hfk0hgD9Jhu1Uj+Aa@*z}C*n=0U7FxwzZO=M6?Ozyp&6MG!Qc|2|r z%~vw);bq!#J4)qg^QN`LnSKX7Gmb&gmbz^R0qU7GB@3j(Rv8DU`h7NMH=z=Rl|ctH z;RCn1vs90|&$#8nt6@Wb@I7MV&@b+F9EVi0k|&dnhC1=f6N;_-d&JKEav1yBw@E2I zK$-QG4_nRS@KLHs+LMDaN!_-Xm&@wI9*Uvwwo2X0jTBD|IwY7lOtG2iTRDr@#-MW$ zphSvzE}r#>El_@~mxbY=fh$%xie9o8% zxGj9yID+OQurR*2Zqh9qI(6wHv0;hgX6HCFg5qYAO_azf^_&Yf{Akh4_({sx9-gLX z)s=Zw-<)@i4{SL_ZR44%s!qpQ2WvOVC!mSa#NlZLy@cC%OE;eTlCqhw^C5{8hl*dt zx^!C_-p7d`y&cL)z0u#(px4cyR>x;k1z~1NMtc<;bjhdVO~7mmsGG4m8I(EiQgBS!Pj{M=Q($L>p`_vC6@6|fFA_y^V69Cr#d40;XS&HcSj*3 znkoXugcA?OQcF2MVWSdIK0-*WGqw^*`Fg&Li;arUe}nST<2s$h`px+iTge;}1{*Jw zrPGHBnErdF*Rf(f8r$c?`dNc;-t18>)q|5|&o?PVEp{8Eqv6{wv%M6K8)*Cq0;oyRJ2C_HLDqMfC?5bh{Pr(Rk2sisnGXiAb` zv;Nnz3jBjcP4)UVmALclGaH4rdT2e~t#JBNYmo=}Rkkp`(h4tI?Rz+bdA?(T%qGoK z<@QQau-Er+B2;bzHHH<^Bsvn!D4ul|mT5wvOx*^y5jg3BM|87ejej1$Tp8o(bNlRy`Ogu=P(gt#|Hy@*GReyY|!oaj* zmAi~>tG&QQDlV%2g?n(jI3)o-k3;bQ1|8`5eKjnzVixg&wNTb9$-wX=M&Is<1>qg( zXDNc{x|bs^_}Jw~v}1@h73ee3NXYY}fWl%zY0%B1O$rO~=vst&T4XFf#d$b+4@mX# ziu=Uc#^^4V@tWm`6zZB)z*L^jv{qjkZhBbo(_2TtJiei+vGDau#nVXJaCk5kcJztzn|;Pg>ybo`>>q9S05vq;Tf zqITn6#<8SzF#4gIwT3vw5&w}LFmQ^}gkIgt<_4smO#yJEitaAGnrp|?kZ_XmwVk+9 zK4|234GxbQBs5%~I(6J1F)#Ut>yeQ+~nuQp4&)T!q8)i?2){E5{maMJFFjj`? zM@B!KYpkDWA%YEZ=HSgg@@zUtxMc6li|rN)l9~H?8e@}PoYNS#u(fwTM%r4q@{e{J z`u%C32R$KM5?%ILH9`xk(eg^X*jwI&)yF`*^8D*;?^955_A1u8ev>~$*DJsR&-xR5 zYf@Y8XzaI7LX8cH8TYrxIe9>gE2VzV{U6FbdxxPxM1BRH$Z~#p9uKv>SG%1loZe4E zxh%)o<{tj_C9>gTbz)$HPvzv~?iY0oay{q!KJZwb%$cGb>r^k(ishSBVd35+%N+ZF z4q+$kmZv|xt5BqEwlML!c9b=o3Q8O&>6mOveB)J4YnTzdm5hg`7evd8qeIJ9(xV2< zRUEa3H#(bs9850$YnmB1*VS8a+~u|SJ5MQp0}J=GcPOqZj-}0*ZJ1_SEuy09u?QPy z!@)TQ@20Vh<&YlFWfHC#3{M}^PB_8)v&8KZKKe~KsD8fHY{hfKE_q-eAy-OqYSQI5AKfNi!4YG35b^?6EO#YTj2gW2bRkp2t3@5OuF$W7`8dwxOlXY*pv_jWo5_kEesc!#{4{{@@CJ*{C1x6*g@iOR&1c@$oI1xrZCjUu* z3T23O{iy&EF-xzwgOmLa*hO6+ZAh@SwN`37eurQ@pK^S+`K*X@3LB+u?--3RA4&8S zUJX^f9Mbt5SLhy~Ui>b^)5|~S7&80;BKS6HM&>o;(^HMpJIXZzUG5p;FMVp1`x~?h^E2nBn1Xgnc-*T>y-mS> z{L#$6XMdFJi&I^I_&QR_x2rvtTzzUsBy%;uz);o9p>24iXl@eJBf9JjoUo)Oc%vV= zBJUs=UX1+daX*)-FVM~6#0`CBawS8@;KAl~-xI~;u-))EGLznIuri!%%HvLeKU_OI zEEt1*%@i{5*bPHlV|tD=TmwO-*$eu+Vp3dnPD5Q^FOj->c6Sx}YhYIU772!l?G)a( z^;!pRn&|5s)-;=5>U4VKc^Z;LL4<#>PFm>Ay>Lt4_g)W>J({!)Zl{6W3p((r{FdIw zJ#B342lx1Wn92sl5@z386s~$jNq*S;sdphco_R>5wW?$c-O2*8xFp3)E-RctHRPn7 zu7#;Kyuwz|`bzBhsLS>DH|zZ4#iM+?J;y(z@D^P;dX}JV5-@Y~dd{~%3GKr)ZUCtA z>0aEubYN6ktv$7RXa^ku!A-hYI=gY$N2E^zJZx};V~d3k(%{J7XZLt7!@ z%l?8KE+JsG4Ii!@8&hks3ebG$KPh^J4q1S>#=GIwzsKBS+!?AwJaf5x9QF=@c8J%o zMk3nXkpI*tsCMQW`@`>8s5ZALRpF1hnOXnh*Vk{9LTCk<8?f0W3k&`P)G#hGy|v^dR6YfVZACKak@J3F12!3c zU?pG0@g?lN?7M+XV#?Io@|UpF)9LJOo>Spr*E(j_()e@}(fUCl-=W3?RSk{f z@vD63(G5*iA-e`!NRnV(R%Zc&l2jW7BxNDpEuBk0HtZlNK9Y`sxql)tgC_G>u!N(E z7aLPnzY()bB%m-FmZ4#4R5{}fF@jEpE3C503p4ss^X|l-`t}H4$w0^keWYjpdW z%aBFMFU%%~s2TR3xnHTjuL{n7_?jhg<}Gn^WKD@(hSpiBr3_FU!R4hw3vWu5-pC33 zKK51}bvylw=!AQ}8;XQLfUtT0r~qXZLUHA6Jo<7N=IyXMSZHYBXY)~jFoL)RqGHhE zvCx?PZ5WZN!WciUU5gbBB;!nB?0%6(Yf$$ys%fw=g&H#qN^n}#U@fub9xH_%! z73Z?WV?`Z{>7yxM{^|2{QjFaT(`AC+>0)#*H>%bCF=M(-Jv>lyM9=g=pyX^??SYrF zKOdZtzMP}t%f4n*;z&>4=3{q8sW0E#|3rvV#O=_$xQ%%MR-QLvLbJ9vgkD%D6W36? zuL+kK!>w$HwUsQ6(^v`Lh-5|yxKD1fVx%0^D%#R25es+=)YN}0hH0zlUd8t}+IYzr z-%r zPNf++N9LdO;aMAK%$K=j@@y-#?5S;g`7x&A$s#{ER!!5AwsH@@*FwHWgdrA2xDM(V zrb>StrG>s%4AvsN6V4d*rMgEx<)Odx9Ov){&K6pwQsUlUmtU-&4!_cuFzIerOCaJY0Kn%OWm{`vyPR^^=g@ZA?HMvl!GVgZPKkR3(G{ zK_6emonbZcQe!rp7D#05Kz$PZXNngkaq^J4f2WsxMNOhdNE0BN@1!;0E=ehnM&C)3 z5{|M*YUyJkpN&_YQTZzq_4!c1=bEZPeczq%|5$T0SaX6APWqlSa|5-2H@Bn`W`A+t zm>pzB!I5cBhPF@ha^B;rc95h6=2g_&>;B^J0ZQiYRQ(wI;;usbb^vi*S%1>Vg%$=pYQR(1@WlRXP1{HZ_VYOQN zZrfq3{FPnLn7HtuQaY2RU+Ywn>Ge~kU%zf;XuPiHWrYOzP#QHdmB6r_6Gs6$B7k;i$`=HOC*>?*@GCr!SqvSth z5*xTC(<8X27uj!%O;WGOiF-@`peG?7uOnS4b2WEEMVYgfag2&JagFjsquTeQ+XSme zD8pP?1y994Vt5&6)8j*2gIstl64Q2$ZdFP}69(>~dRGL*wt`eKfN?`SgY=QBC!q{; zeZsHqQaEF_CYdW`l5b6VVj#eb<=YSu($?AM;fi9q1iyswy`*3Z<`vYCg(d$HN><&< zbx#~2(NF`?)w06X@fP*4JhFc+gurpVf-iyPS52)=L|uVhu>KhP>?}X4OTH~%$vf!5j zvpCIQ#S5`&xeg!7GPC&W%Zkz-yJtXxbl37<$9fDxhL+cp6spv+7)wx}V?r*43e&1QgV1RIvtuh zV~@#pKPi)0qv7P$Q9Q?vC*1l*yZOz!mx-(9`wHhN?G#enMjMBg?Vl)}+Qum-Svk4pt|l7o zwh{pylmbOP+4*CH7=LG#XM9j88;d$)(TX`OU}p3*DV=h6b(B+Lw3Dx zp&@UCJHBE3CyZ;c)jwRm7fXx!T& zdrK2GTeN@VzSQsuRF?S0(Qgm;_gAl@N~k$GC3!W^YWZlKW?`yFMuQwm`jaOn!^qUD zQF!q6z|$z$qNf;p>GpZHddC9g=w;%U4ifnkhPUJDhlgatpX<+WT@Bponcq{s-~OpK ziqGP%95)P>?6dV~^`hWDnE^TDgU#jh>I29klSux;=#k3$_xC|9^aW1-mIk-ij>BL} zMy7*%+sQ6u!>Z{6tJta=ID;(a!9adPs&OgR-tu&Rb*aX@3m?e<*h!c9H^`f>mVTuz z{$Qzcs4=cG47&TaavoPz*sZE;JW6fF(`@5KMzJg$&XOPYkh~0?a_|STndQ^SvP$q% zk;xg4>ZqD--(>(t1GyZfvU>#z)buV5>1i&JcnFX4u6>=pw-oGT_((Pd-S{@!Ex)?K z$GK&|ggjBo}>*rfDc(Ps{@hp(2V z@tS8_n!1Ep8awBLh`HMDfWpyUx`n85rfp~j})95cys6X)RxE%%ENedn!~Ba_DcAtkGxSO)H(OaBxBr%b$a zDVJMqvL7GA8-l>VMakHvuMe2uVGu#iV<~RbWs>9Cjag*vsWrYc5$tBt5=LYr3P%QV ze?0NkDN^U982+ll5awT zA)wEjCB3hW}29an*MT&NPJ!tDnf7ehPp?% ze@2lCKx;pI&vriA!fNQ~Fj{B&6fzT02&x07i03T2VVSd+x-M`oX3wI zB{RJJp3N5RzR~EroTaLm-7X}a!!nF`NkDbKngN5=LsGI3qI`)nE_7GNVF|E%a)!A) zIQB1wnOaSg`afZ@jD-|VQs$fZRc!YUd@#c+>vqzkWGAMp<{(l1fH&rTXh-?}_jo+X zV)`egg_VW*c3~lv;>7k@L>Uy>NG;4NDG#;9eK=8CzZut#N>m(lb5ep`(nM~@Sv74g z{S;M-Madj~c}}^A;Qx6tB{Z}h&O>fMzBc}GROCo$Vv;%yB^N9W^U!Oy3{Bab&^4g( zU|3ud9#W&&_HSB0?J>f^8DyXhmLfd<@bM!IqKuQAmc}w!e|8rw5v!8MpOV$zW4jTX zy{KOc9o&4n0(BgFXFiee_nG;U;AXVLwrwx;q#>*(;{(P_i#CVH~1a+l6< zQe338KAG#ZE_8;g2Q`TqpLMyU%yO;qd9X6SW7g%0WT>(2)hE2o_teOsY200Q?5pN2 zQNmVGupd{p%l}qYPja~-a62?(Ja+)LD9r6ru75Lvo$n;nbtOfhU?=h_MaRwMSxIal zh6}inRVeKjy#)mS##u!#nIZXMe@v5f0hFRc-R@(q(+UBOfn-2yL)M@WUc5I?>W;aylq4)YC94)w6W9y|o^i zkR=($EhY{jtbiP-j2v6G z%va;SoeirqtVVod@pg~Yf{in0c6vk7gr}9YV)?Doz2|5T^AwZpY+&A_jfHTtp_Ru5 z=VM3Bi90xNzt8^>+VJfhh*WU@^z9l&kwadss*_vy@lTA6{Wrk2U~&yFO5wHwJ%#*t zbGL{@p95ZOWMiPglbgmx|JItK{d6ISs%V1U#U8tDzu4K{_`LPBHl4|`PEE^7fnQ1N zs1fSG@=W-2g6nrTb=>2y?_WL^k^+}I1M<5lSDzlyk_{Z@0HI)5mOxQ-XSfS63Pa&qu{D-@tRZ1>~&7?;k z^fUFm!tgFTY%})A*xXI>d=By~vz>}72%~K%%DjgWQqNLQPk*jZ`1VmmjeV|a()lrc zqW42$YMisf={mOJ_NnV!=F}gI(W;zemjxbD>2pn$s3vjv{wJ5jJpBd}rh7#HN3Kgp z8{Gc;xtif67Vs!C?x%5Cgkjfrc=afR-EF>K1XocHMhawq&*%BU&KB^kZhQ!Wciqfx z?u>Dbr?lsws4JM8i!D+X=-uOyU<=153iW3P#Z(Sp{GbLg85w~&^xnjqiJ9_D=02l7 zMjpgb00rPUEJM0ApKa`ms!@Al7p`$R zi_2pcu1F=IrNI=u_5kk3-9(-BiWUeU>^dvA7uCLRk8tR(ic88b zDCij~P*Txn5&*_9dX>9;ioF}NJHRG!{5u$GY{xhrDYmE!Yt{ zK(`cRjX#@k>jx=_5!$Lo)G6`YU7xOwU!Axv$L!YoM&1_2%>l?9ts%kM4b_a%3-8*D zRd1X2ds0%_;bqtLCI5vx%*KcxAtA!Jrd7|1l+d9}{}3aBRd-|kKvvsep1Kftgq|t~cd;2Fk^`_89-pM@C#zNM=2R_nlK^>) zChh=`sJwlI-s107b~={!6WDQOQo&n_T25Mk#Lhy*>U&+Xn>+t0EGUdRYxvbS=T9&E zCls+e@@GblN$o4#c{SNv-(>>Y{-r{j90of&%U`porLc?k@p3~^vEf^&7gtz#X*=<- z8HY1`u7OABV45VE(%kw-r#ONQ=K^gvwysIOkp;{xnP?+wVYS6mN{yW?-MZu0k7fP`rgt0~I5@K;F~-sFoUvs<# zblJb3*Wul2hXlue)?T*+)%G4X>Jd!_617ms17DgO|=Ao?bt|M8O=NjZEw1@t21$>T&A*_TiLsn|7yp+ zZ%-GA&Ps5}q4$a1Ox((=m1)yPXmQWiER58-!C)wx2!Mb2jAzeOL=jm2ns+VII662y zdGO&*C2}j)(5Z!QA*u6J_yNU7;f9SNXLY6qO~4c66$i7)LNtf#I8EAjKQG5@TxoE& zdKIpkr-M?vrkuBPE4hy#V@&A$Kj6 z6I@jCF1|UvA#EG|PXZVjKAfqx2xn#?B)BlpUZMI)BR2Sq?~*| z1d2JuJs!Ve{%m92<`3((!eDb6R7M7NN9Bxj+R5UR^)KL|!tA%OG z&!1B8Hn9-{aP9W6dCvV&%9jbT1=I@P+Du}9z$ZK7em8TZbE^89dQ{d@s2%Cy;P~Ea zqN1}K%olPUJz2AK>4}53)HYq(y{T>h4G!+rkfz}RCqz)ULA_E9Zv602AHT=o%EfNI zayG9Zjan4M7K5$C=(1h$@X(J5PDXhhMpo)1gb&9Y-Ps%hG8i3VN?wNLFH9Lv;C{b4 zdFJDytKl)T0FedVP|J9yZ*9JHkCIFh*{uc&eKF5@We&XU~$6$?82#k8-ZKai@35kNaRLxMwrS=8RD94_) zI64>oOPsIg!D;}|SiZ*hT3`lnzBUhru$w=nfG^15WB|Gz3XLkCYK>jn82WrUbF z_f_xXC6GrYL|)zcr1~lQw2LTW?TfnY_uO}%4Kz=3^h<-`XDSNCBxbkkc{^uQxY%Ip zy=oh7B`g(HyU{AeJUH?O3dK_{_M5L})jo)~T8FEve1Y@``)Zej8l+HI|W$ta@Mn{q$NvVVuiqyE5T?MuLV< zt&I(2QmPLwH}5cm@G745Vjv_W(&yqj)lfutF_8c%%7G5hh>S2uak>1R+pcNX#I@Go zuZUv&bSE#4QK6Y>Iwbh6-4W!!d>7(1WS(I(4T>K0&5MiXR-%+vv!>p9DV(|R4&xu` z7G<4}Ya<*P^|HiiI<^dcIJU)iq!~Ow^O~1j=z$s&$KY?L)uDpIa*GFB6Sb(2AkgVB z@mT~dc3`qxE=~_>eBlzJV~Kdee;`WVXoU+a^Nkc|^sJNuL2X$h&h!P|g`X1o4wK^H zVv*8N#5+$GFk9Yp5C4Wt#lMe3*UQBD*DvSdm4>WQ- zd!Be2_|O`gLE01`t8+b!{fW7_;+FK_X_`~3zGLI!rh=`JJ*W$Q_10L$^y?7Pq2PP+m zHC3MVpk((7m$9zGW9-AO07IK+^g`zWUk7n^fbZPX&{jroX4hg7LsTFl3t4}3fB{kcDZlC zM^Er1z@!lyG^Wi5gxa1>{dowGPf;MmX~bT9T*sgMYLqb}9WwG)cw+6#v z@ocQmrPiw3uddj=iCTt>5es_TW1K(q$1`5UuC)y7xpDNfHE|5qOB1oa4humpVE7CJ zuuhU%!@tekFJ3c-L|C=VpDA92yh4OHKTQ-Ia<}3rWr=TrBVn-P6}=!|EXMV9kgi&G zT#L=RJSD0+w{;4QP!1lD_P7(fp#tvef@kXHN<-5ecZpuD_6JiV_7fse#yeL&vWiI+ zv7qP;MfRzu|4m98-IU9|{oGUi0*d4G>>np~0A|kPHkgU83r3xg2s5s}sBLX^g&(H} z&E}7l$kBgJXrLM)9?6(0C~jSZJdDQ;Nh?K*MCZvzDG8OxW96UEjhyBCo{2LDxWOro zd)-`r=U5kb{{byl@3P~yH3o4eO^s-3mKJf3(gl+<+f|Q=lIvuVo?r!51%`h9jRw=y zZ#~J<1(h{gY&CRDX_0n_NletFX04`T#`*^28i=Xx-LQoMSPq}IIT%T$-4jQ~@f(;* zM7GRJ9awBT>Wb-X>2i#SvwyjJC)VYZ9zrI>xzI@u zev$n>7`nqi3_BW0I&B0DvPRMlq6T&xf*y&9eASL2gr(3N6?KU6;}{FxukmcdrhcAGPgg+CqwnPnQ)=>ms29-=?-rZMz?h z;K|R`@ci@yGi~VSfb1aq7Kr8&37it~S`pe#)$q-FfcddiDXzVGpt9jp`(ce>va~of zTisA;t8&8e=75E!Dz_QS+X1^HYVL~LM8GTbTwzIES9-<@%nu&_8AV452))(--7J%& zblQM6j}&0RD)Ut+ouCYWkjaMQ`YwfSjB47na}c-7lZ0!hsZ;>)!0l4us99pzcG^91 zuM?6`HPomzVIV=MsjJ=Ugl3{wf%B|=&GzLT*Bxq(RF}K<_donP z?4)UobvbkyI#YV0FyjQw>$nX|m2j&GI;!8f}iLz(t<`7*NaLoavlzb^O!+7&!JluW*{maaeW z5RW5F4iZK+c2#|Hp#guJ0-!uKLYf2t39IW)OjqIPo7o^!zPQ+xry(zGJ0*KW zgG%==mJ0s%O1huLsVGVP8BhU|zwYAKtI#fKefH}!^&6>nmC<#8KHn^!Hg8%g^w#uq zx0gy-?ejOX!jqKR@k{D?VTB!wj#J_-A~6<#`+{t~x>~0L zZ_?ZP61Q2h_prv_T~;XrG!rG0KdAs{Nxc?~*JA%pX)#9<2xzS2 ze?8VWg&SOhxBh~UUh32LlS;6I&CPjs-4sj|(@)Ge(PQETg{73U(p_TtR7Z>?YcU&Z zwY`c@GZlnNWJFmi_UwWs|0s#$Z(I1d^>U05EVvgf*xS#Qx#wyu-?TsE$?4hM75Hgo zyJ}8yyVc;dxfy_($^k|Ppg9F<@+BOUXkJ^-pY-&Z4T1og+$yaSzioN9(|W?|1#Xf#gc2c~jE4M?ZCW0VK~gw1@HD$Rfnn zTJV7BdvZP=H@#WIepG(~uT#@S&q}NwWg1jk`Zs$Pcr4tfPRuAg1EK&h!Pfh;K8^K6{pcFRjM1 zhxoc^zc}r;4dXgDY;-M{0-$xMX$wfaQnT*-=bYbTbf8pw$*7V_Pbc?@)5>@TRA)A( zTPEX!eTiE73}aKS%(D3j@-d|2at~ngGAvX~uEvyr#DHS50>IzpO;^9j`VK zY3(=w(w$nts$VWHgI9H(1PXoE9(#qMFDzfV|{{Nd{ z9Dc7vVNyB2h!1M1sz&KkMMl}`figbOkU;=je0@Z~#6TA$TaAf#a3VUPlISU?B<=$W zn;#(KNwu%Ez4wsXf9G3Rz$j37p=V=L(a_Lv0B_gz@o@6`iPTcs3(SLRcMljeR@w0a zoI`cvpS^b%dI-gHwzcBCguE<{!~RH)Ur`9Kda zY!f7nB~yT_EL}^UMyznM-pR=uyRMP-WUD9Kam=Es{|2_QA1}Z$J{Q!iL=vY{qjgm+mt6-{Paat+`VknQlH3n{9n&^ddevi~0$rhxt+ zAQ`$4C9?GeycQUPpo>H{!=E#F1^v$goCew`an9e*XdZ~UZH!kFZkMcxpMEn4F0rp_ zL8G&gqF3j8OG-@b-@a!P-rE-q0zyEA<=Ym%{`(&--6;hGi4Lf`PP{EaC3j@ViFrRQ zPf|!o2ntbudNF0OLACdrpU^_Ou6?JrGg$a{X>!X)obzfX}QXV_s=_7s%)7UK{v1|CzLF20LeETATvS`H3O z`*l|++oO&&4VU)x4ndQe^EzLE+VBy-*i{anyQMQy(-BkG!#W7x-)?#!?m3iEUqI>d+CO2`?U+Bx^uXr@wATuXD!DXUY178j~L4$GJKP~$$l7_7fud1os zV6scDhBpW1cuyP5swdl}C0?vN4aKypw^awj)pU6N? z_ba^>oC6F&MmFauP(sPP9kTWz4`qB8<$?M*=mFcRytPc*w6bn2G0?>H-T-}c-DGFT_nq#7OJkwPkc@hcZ=-tUxZ?18 z%cn5YVx20|OU~$q=%K)z#Js&2G!M2m0e=hapa4WK0 zod?s1PuNhiqKl-L{dX#__|Zg0LXcK;a*x>C^tf{Lr*2AheCu7+P4c^?kp zu}?W&c^J`jPksn|XZoT6ShO~}Z~Y0G(El`g&dA!CjxUC~gtQk1+>FIgv)=Ai|MpX) zTYI+s?#F$Xg*U)=Q^K$DW`Cm)^>zay^Jw)l=eFtHYsW1af1MQoOAN3@phEQ@V~q2E zyYvVDw{yP^f&LzX|NZHIv*F-NuaDnE;PEI6YfTaQoKVOaQo)tpDEEm*}&%)B}`$ z7h{#!V}KsP_=xNWK*RSPv?>{a_y2kwo7fQbo#A9JgDZIW8i+4(^d@l#FvXpIcKcnA z{5B)EF3^7Z%lS8A%rpo)f}8|R@5u%0eQq#Sy~k5pFjF+cik$I8*0JyS-fa8);Na|l z_!z0R<8k}yS{gy`n-4XP%yViS_qY!q@Moff&Mjt~0{6%bhxLv+Nz}&4+5q|KjBeYh z_6%~n)!yEJY1!TM;+fYOsjkuNWSwmsw&TjJDQjy!(L>_s)bKRm)X!Z4JHvL@#B1ju z0+JE4oQ?`lDfbwAZai(h@kKaD3#X=(1{gN|&q*8PbK3kzX2ms6lrtx+x}Z>-F636&Nab5^`qUARtHXQ;9FG^tNze}YyP_;57B30)gw;+ z*sR8D!dP@=!OV;G-`M+)S-;RohkXZ4>h?%Fu(9re^^iRJ`6ac|58y~ReHfgPd zo~r^wzVF911fmlIO`m&FZ-x=u0EZWwn8?V?%#0}Xm?A*|+(*j9)fD@+@J@Beo;Xf~ zD2Q5VHFlnIVz3sV!U#nOCpnHyEJpGA8U6OK^@;}^3M1ur@h?G_^DMH@;fWwgR_4xX zWO1fCA}p|%QqUsP(|EAjbKekpy-~WZH_G+vgOyTi*e9O>9z2c9rV@a1!bsXU0#=ol zWEAgyMsq>;=~a*^=YYn7e`cx4qHo2MR8Ya4b2Bg(Y@8H8>#D%scJ8XVjDK+Uel;@3 z(_(Oaczy5>)IEqYz6rjcudAkmo!mB&SDNt!#W9&%eP>`*2i&~f*DR3NJC@4fudx{0 z4YvVzDii+SW`ON~zQ_N6-(GM!INpL+@jsvbpPP&S{LKI3AAC-g)lo?oLa1%OVK7FP z!TYTen76vV|HST-i32(XPC*W1O**F#`3YcM-lA>SeX_Qw6?Z&9wExYmD|!-M=>aA$ zJVC^q?QsuZ1UhqZAAHr?QAf&u{+lq%i~MyLBG;YYuNr^9zi&BFWA!&MAG86xjN50| z@&sMq%5WX7>-=m&ukvGySQ_hl=Kt^--E<1~n-tUqQ!>lfi7v>x)Y}3t76x*pYXZ(Z z4e6l9>+XhL12afRtni>J#P{T4JBZ^t=2Ov2j*X=aI-jSu!qnM%Isy875NON&b8(0U zbk94J%m4bqVv5;Fh;)g-Eo~*m#nCZkdgoqibD|^k$Aqy<_ztU2{8f)u@}l|Ew;L<2 zrV@j$rCvJtjh%=H?^HF+;e*ilRqf+YN2lc9lO7F|AU$q+^2#iJfTVKUe_3P~h{!AW z_%xOv0SC#i$g%CfBV?FUVB2vQ$B+9Q%>(9Q*SCX;_=j!*^vwlm(oJ+KjhL@#stqs9 zrZy&OReHt6iiUqX_N5C!O$j$Hfj($2(3kniFEHQ+=vRBw1=ddHfp~~xAJgRgMr}X; zSV7xx!Md*qkZ?wXx%~o;g7Wb2Cb&C!^`{K`w|Da6RAc9(MEcy%2I9EHgjip^`096T z3`lF2h|3Fn!PU5D{h3E8y?!0D>bl|is;{?~N2$Q{wA5w3J7p2n?Ey*~$L?N{>FsNe z;V?YFHDFtm0qr9{us%2niJR7Gq1@UW+EXSZB=YjRfg^bY2HA-X>mA|tfk0U%2Izkb zvn>`$T$DT$kwbbl7{?xjaB2Nrgz(H-m1NFu{>seHff5$# zz~h|N>6{q~`=o`AQD7XNyV{IR7iIeXaDRn9cmwP=H{0%hx+;fnV9~OVn&_X9i7m%7 zl*Fakk68rB(4XKYhDd@ZHcJso%k^8qAHzv@xKRG&Qs2LIhD zEvw|7|JG1985#A8q?8IQW{hnA-Zc(l*tLJNW__pzy)KkJ)T1P&@-Wv*OoBjwa!n2; zFv8yXZl8ZW3GJwB(PE5gdfhhV_-hm7_1NI-uXlw3S2}sqmlavHfqg?g%0~wE1%-vF z7mf|HxSByd3`xB1+XGIy9RGv6_l|1n>)J)_hzh7E2uPDIO?n3rm0kn^AwX1`^d349 zQ4m3p8tI^Pr1u(?PH0jRT0nXUgc@2%ayR_S`}^Ma8{>XwjC;(O>|Zy=oLp$!Od51t}Pa-n?LH40K*DN*L1WTL$)1V$wtUQ2Z8+9duJ- zWZM{@B0|blmB(zSn*2GF-TRbqd&ETrk`40Cy?uy{%0YP=p}Ru%&oN!xwDE;jEY;4m zuNkB2xVJCW14(tibW+vLu8xL&w493t9_y5Rt%etee=&&k0v=s?0J$xXR*3zLVd0j2 z^KT0arQ(bB*d{`$DaLr2i_sEQ2cy*dN{ucwsU1Ly4!E3Ohm(j_)Op8NsdyYYy>33S z{F6XU_%RTknEce-6^Rb^Kxh?%w~wAob*V|F3g%f4}g* zU-SQ~U%fV4OKTR_7cgC4<~bDrqE5L)b+dCAoXXETiSIy)?oD@zx%R#@M2vYbIQ#(@ zrGxI z0!si?GeU0jWi2*a#&QqqU$$C!GaIzgGTR3y?+#V8ytGg~n`6z0x9 z>T8-<4Oo8Ulr;IcvG5STvv=3Dh`1jUyq1A2Fs=@W>24xYmiHMg`fD)}F=z7f^UFYl zOP9jtV0*-0vQ~9{3dG8i>42p*8B(-h*8)Efxr;@nU6Q5rNr93UALJDkm4Z%8=oKJY zzuGMC*4nz&p#+c5P$C zizylaZw_!1WLdd2El1sy)};0BCj9|jy}3;&Ns;NOS>+**ml$&hN_jR~w6CPqo!E zrRL{m=Uc5wlg?l$DMUFlI~%!LZi%6!MpDqpem7|+>>ah#$~kp71>j+vfeV7`_^%qW zKHp^VbKp5%@L@Q)kYS;jQ?s?>pr>=b4gKRyCfC=tS1Op!! zzEEB!L3+J9S>AU}r%%xAZqS8Y7{&^Uwnq^hn>LM&_ByS+x7YU8#KOXvWz-z&h#)KG zy*depF;2_*c?gw4v72w1u!x4l+DN9QFnwU1h<7=#TtqyXZ5KUC)rr{Impj;b8M^H= zkMErodZhzhe5Msu?C+h;=fAeb8Tbd@o&h+jS9kdN^{-#QZm-JDC8Hi4bDe`n=ob)_ z7UvbkmkqcAGT3MehU$(?^R^_G-ngW35U1vCF6LrF3-bMyTc3CnPUDw6Fb_Fe9}(k2 zmCK;eKyq#|ugg~?xWXAY#KgqPteu()uPvix>N_1MAD#WqzSvYN`nkKS>(fxI1&A&B z(`S~@-dUH8=NUX)G79B(D6@k}D(K6)JzLm(+R;>TkGQ_s6P~0h`1Al0e!iomrOORWXMdlxauq+o+&&v?FfZxE-CpVhb8ihO`zI6jx_8%ed!u zoQtJjIzK=YGTKLAa{;G{>=(~2k5qx*+OznJ|-I_s^?cy$@tPZzLo~F}R zt)VZcQw6AUvXN8%wUra?#b3$>-09LtzZEpSmd&gJh%yzNC$LS$C163ORMk?84m^wR z3=Gl)eY27D`h7oeZf-~VC87zrGR&)fJsESC-)>Cb2sC7asGDeNbkJP`F7e;?f&JKhl{&7Yz+FFjEA*bWb;QhYdC1Xz(__sh`hIFM0 z-l7QHUhfta1E<83g99?l`FszniN=V2q-&E8>EUgE{DKN;LVjyk2B-@poA=ax%*GT& zkd2Jy=jUr~Vsx-{{m- zt3BI#7xTwmIf8Q9j7x$vbjVfiOwMCL3N=`8g;gYxCj;I*=t(pVL|r!DQzc02D#8>s)Od5>E_^$;(&lK zzp@u$Chnt#^KGC20a`QXct2o?UmJ=CfG^Vic-yQqpt9=x@kVKDa6I6-G0mSQ!30)L zybicGmY4Qp2HZe|=m6kFr#1$+TXf#^G1~l9J^DMA`4<%Nza?b-KOQ6hw>R{84T!qx zgP;9$iPXHkH`3yAyf5yZv;PU&0t?C?$NwxTc%Pc?yuHxlIv;1)1r+#tET@0IgM_8U zqaEB9x}&w0^j0RWDHa4Ob^8 zAz^sD=Y7>lcmiO|U($8v=jJ|J0y2{;K;;p#I`X0m5zil^F4*`KsJ?1?0}w@->wH&m z+KFR5b?T)la3cWC{iGVh*$I@$Eb3T*CbpoiuCBRmkv>t=@a^sGwbTH|bd|rb<^4xJ zKv_ZUo`}fc+jqynq)4yi*NpQS^uiYJP0#iZe}KU`L(F^??^ZihoRqImu?%?mQPxkI z+wlG*WAeIxybTsLrLFq07-Z62qG{vj<@w{f+cCBrPA5XYixQ%60`?CZq>qY!cYiT= z@-TF@>3}|Ow0;oze$H=NW&n?o7`qN&2;T*7d~N-^@(YZc^y5BiC31Ps@DJ%aT)e-G zK04K}iK}X9iF>#$_KG0@EkP14Ln%c3+`BpwP(_>r_9+VMq9XtGILIVIudiZ0XDW_x zndGSckrQ5_bsbMxlGQJXEe)MzN|MA*1K=r;x#<82(&I-cb4EAk6KW*RRu4&aTiPfz zI7qFY1M{ujxY*s5nsM+G6~}#`n|j%gA~F3+x1?h>9dJb5vE>vw28`$9L5@+tUdM<( zSc=u>GaxcZAajSLOgwBCI@j;LOW2Oo-TmbXvbF6C+Edk>J`MV#cpJrXw~lE~v}sFe zrhuEqX_w`iQ*z-W^`&TJ`HhC1*wq@Rh^K3lFYJuPH| zG&=FWiZlCiii9lLtY&=k7u+s)icyHT>r{ymp`q3U~#OwLv0sysVwSx+2Xtg#u&MY9LmKa_rXyTO-eU z5BP?8dE7#@5eRm@q#iW@Sh6u@Hj)3i_A0NbsmW|+rXmb7=%XiIKrE|@&KDdzzNVb) zJ=fRba-=)SYW^w;0~Rfo7}IC2aWt^kAN1KyQW^^3lOYYSkMnu>B1h{UyLh*MsNVZz zg&!x06*!@{yS}||@`x=oX1&RP`he$*mOkWGO%ttr0UxU*#T*8W_xPm0I#K_ZN{ zRdACjx?7V;x}c}et2h=vMu*R8MJ4XH1RHhttUFCZ_GwRBmiz1tE`7Kw@(7=>7>IR51f0g~)+NTBMQJ{P5zC;4)we5{HbfphYKlYzc~emOedO=`ZgS|l;zNmW#nZa*-JH)hoBs#nsG0UhF@%r%U_)#nH zFJ4qI>A@f_-G8F}hap5|WjEj@@+?QHYh|X%%^PpO4F7B5NN?1SMwc|%ggx-ziGkx| z*(0S4)IY`%Z`NPrP9i-(jgu;Cn`Xcg2?AdNWfN+nH`$;t9Zz^$j@n=v73z4prvWVhcGL!6sMTWgr0iNs<#3BO~w+L|>R!?X88WZk0r7?z%yn4%eU(;b(7g zAAG^I#N<0Y{)kVitTW~@-YvV)NXTCxpV3r_T`d=kulO2C%4%q1G7trMhA)ZH0Srfl-Rv_*qQ1@GAvRI$H&hV*sNfCco8Tcd@6ACdpAmz1|Gp zDO}IQBA_@E!npYD+$1GBUEOo)H7?lyO;;c$J69d*KZwscgFG9M-PEMjz^P)})C1o^ z*>%hn*!WzDTee-FNLx^tCDq0k6_-we#rry}#x*iZ?LR<5OMVFq<$-;^10|D_0OaDk z^m}IU76;^n7~YU%n4>xY;}tm+=29E@IcNmrR}-Sm8@ zfhw*FH=>!a)oV{4EM5GP5^QF<*SDdq^P)8}fzxIRAIa~bu~}b?DDqZ-Mej|C&SwTH zS@u^uMaicfHtw~P z)CWcmr~51pIDhCL=o9^h5ia>wP$ln-KFT3&s}hL(J&_q~2W8AM#qD+u zvGp&cnedXO`V7SThw3ZqU0~%uVJiuDyiVE5u1{cJGl_df1C8Lth;c zzE*OM`{^`r9}Y7@ECY_?}URW(c&(2xvlCqdjzTX(i621+Du z_u*61w>HPKjIE`L`J!rw<{Zm!Mz4vmYJ#516E1K2xi4?3G;l_$!lBRt z$G|r!?_EW+_OIcO4Hm?w5p#xaGDpv4uxbAOg`Y{#tytyY@xvLp zIVoJ5jXvXJORZ!bMWxVbwz55D=%)`K?KGs;a%U}mql#iy-2}wui;x2@#bb@8yGI^H zbEHK@JuNyh#b7@Y*8nE`vL>AzuyO&31l7M{5sr$R!x<=WtWvQ&*E{vJxG|;kkTCGp zhLDv>vssSTUf&glcl)PCYbhH`AMO$fp1Mc7x_Vl-?>##N6C9RFtw@iUb)b#0 z!hxoE+`H-z}?4!jJD!v0(g9!?c)z$jQpefYcfJsH_4*XCc$%K^n5nZPbWIS5DK~gC2`Gcwk6bIhsI_DHr};c?j3>E zS{HEH6YJYk!n3q()|<)8p}+wmn5$Z>A@!q85+Fjl0P0=$TDeueN?Vr513v+o_5@^>JPL~DAyk6o6V3N;qu*EvU85{e_Y}1YBdD0xzHH_M!j)b*l+h}?eyqgq=JeE(NPb% z_<$rBpe(E{Js8WT>Kow;M0i#|sZ+uqWnE!r3o0U%&LvAU$6h=5k0;J4Z0jBgc9Mi; z^{M*nXQ5|c-ZONZ>|F!oPlU@XwzZ4IL<9?Bqh>9aC=_D8>GcZDW826&B4jqY;g(Zh zp`Xgch^M3+ep(Fn)bw$riOj1EMa`NWPRnrKAo>Id zbvQ+bHYpGi`_`2nty$Sgj@^OL7pP)X`-&>Eu)zF9@)~Uh58Yt;)G~28T7LN>Kn!O@%Gm|VVJ+4>uJJ~YJWJ5JNkx5` zfE;;Gy{P96W){#7LqWUZS{1cPD8k?sx8#TvQl_VliI)0mz=3b{r$N-vqq-7C&qaQ% z<_BvKQ@7`7+t0l$e~T%IqKm_({L!n?-al=GciPg_{R|>_zT*G=^}nj5>Puo7#zRJR z+r47+#&7VoNsUhsDlN^q9S%+zH3h`o_F7QTEr%A{=%W_(3{|^w$su-B3k@3nVq&^r zy)`}p%qM5H09VZH=NPyeuz`XsW*_>kY!8rDoK#n8RI9SBFM2wsXXMerH<-8WHT6ap zP40e$5~x5AJX!C3_%CzuRi%UH6bqh6um<9KCi%yYCpLZa_~qF>I3DSOX86JwU>?0? z;$F+EIe`Yg-ZL{w7s5PLd7{UZLE_>RG(kZfE9h~{;hS6uMoy+KHgv+9p`IGB@%a4} zTg{7$R8tcy0{3ENCaM-Jsef1M?5@++`DJ2;41yfuj^Esf_QIHM-+<8%#pSN~vIXA7 zupu&qR3=q=VU3w+z1F1Umk*qrJ_xMUnF7ZB+TT6lx^2Ci3o0ghZTf~5NKbX!8O`@z z$w70Uv3s-7H-Xafs84fge-j>&AQ>x!r6*kxpytl0TC;WEGbb zszBe5xaN-d`I;)-S{6uA*GVy}CPqXI2n>Xt4OWSEQ@wp}1is2#g5~pg|GM|#^C9VR zs7Lv2KcY|`FK-mEwrPa*ua*l`fqa?%;S3%;{8;7p+5}%2mTA!{47%PayLp9fFDJ)= zTu#;S9GMl3MMzaHX4(B)&jKs(+Af5T2e`zL!_L@L`&0A;VU&KUz7f?JGO8p@XIuyi zVu+WHc%^*x7USq7oM2EzIy3-n4bpsVZz}r{ju@kMnP>(mbifh?lsWF$R^ZNBY|4;C z3RgsrI+K0sfUO9WocpDA<+o%;1Ey|+wit+mQwcP=V;|wReOh^w~PX5NG4~PE@c{aw@?o~nS zik!^xBZm4qd>YZIR$3{zyEe(c;YI&b3F>^S1Z&b2Gnlpay*VVb2yo(YKMhlbPFoLr zx)v?7jkyj>w5o<&U(~kRel954eOcd-uktiL_|oA|RXDdQqnM)ZV;NfOgcZJ+?Z>Jn zKG|rtvJIbq1tjlte~@(mAN$N`6RT2 z{D+!B1FIbz>8>H4@@XL#+GMNVb3PanLa|R-t?ixHSQYWBXwqew?m8@f8JsPH5H-C} zH142?UwW1~CR{-tsq6#Zq05`7QoSo)B!uo!Qe~1JcpKvQK6g69%-ydG+w$KGmz=as zm=e_MR{!;1=fXY~UibI#fUNg-zkR6M$=Pr@UdS@hi<&V0M(MkA|7iO-!^Zg{Ptnig zu6WP6@8zUxV9k#}EWsMoP#KQk*KKn7_|*Q{ET4k7`dZoT50hNg!x=V# zlJ*tkH)6IPhqhxXeLV!s*8hV3j*V{r6dhoOrK*v>#vc_lhDxuYH|~{qe1V8L@}?9@ zxqqguafF48wkO5DEEWwC$ikruD=S}&*6H^SFf-YHe%9y-LytZ6v#NsQGOA>6 zi$9Luew?U2kp2P^xiO7nlK(5EyZR)E>eC7OXzVrt^a!p36ICc>ak+&yq87W1(U751 z@!xJi@GF~~Ib(AD;coOgyPJ5ciLNaQ=A?V2e$DiGygX$xqFJWjHBs}|%sEt>n=|NH zB7{X=Rs+%Dzk;Rr^nS0yk6~^gwlk~skNJilyi3hw`yN2fHULvkK|E7s%AaLA1TnAp_(7cNm0yi<)ID!D?xeq`G7u^C1No)# zZ%^^%!pZvEo?Ug@a}DCVgrn6&NUTvNc@HE&E=%h)=l_3$0g63cFgB%OZB*#5q5j)jC4CuhG0ZPYX&nxaS0jwT!C(>|WfdeG$ z$EN`IF#t+afBgDCVxYX{zI@3LpnwCrI!VBeiQ<CRg6VlO4rNB2jI!ZB4!*4uP!vF7eh-g6GN=ck$CVc|Bs8q7v zzEWX7DtxRjW2geUdT9du!_myvKfm`?#1~HPiCVWDK*nE?;kya^+9SU9GC3{H32FL= z=;TiY)4ul~bp+H)#-NR=amSdsIScAj$0D)po73-T&A0*DWKQ>=LbP2#+EzZ{filfL zKLb!7FJ1xU&x#p7tUK<1@X40y!N6cG-ICM3!m&RgbT{ZhmSrJ)vyEXs)fX$oni2f& zt|a$Ei$N9%dWG)kjekJs|D_JFre^Y|0IW@$i+_2z0A_UIE;si*b@@LEucuB0Jh^s* z5@_)@Ffag!P?&@)9TL*ZZ(}k!)L_O)pRAZ9fK?v)7a^?V%N_0^Y@5V{b5KI(GcMr- zfWu9f*3THDb9^$oC?;vCh3k)(eCp`S%kT#eCEALP6`sFiB8=Hlcyt zJdO{RlhXmYPRB9_Q4PQQWOx?*wfAEbJZskaw2@ zsHXS1PktPq)^7{gik9=4%2THVl~o@qKK%8yCR&*2%_}o1GM^pd=2Y+QgK!_5aSk#{J;6c_bjjbt*=jwz1 z;*%~^(O?w0 z&Mjx^OO_fO!pw0VGuy}ixZ>2qX$#Kx^5Ld8j|1dCi{{O@jtLSMITlXT$j2x41Jw3E zFZg?W{&!dtOQLrpQ$3Q~BE|I2b>aO3I-5{P;gekHzZ@dV2VAFW+_!M{!4EoufJE-c zU*G68cg~OB8?24p98Xn%nRJ?^O?Ed2-eHO|<5Iw5aa%)R=1O2`0Q}%HWnjdFEU=O5 zpWuW;&#hiwQcN}2_%0Q32DQ~Mh^_vEI$9bIc=(t1ja2i#fos*wytn8;gG=-8wADK^ z?)*{MZ@GIsNdn(LefEqSh^(sKKKtR~lqNUs*;T|3vRsUJ_=xBMWo>*{1XN&$l&gYl z?U6CpsM|U_$jy6v)`_(cJJj!*>Ru#{VGd1dWWAYXDeOF=Bel1sJ<2b4950GH@Ww`Y z%N`ScUopS=DPUmAR`$}gFxKGx4q~?>^OpJG%n&Y z0WvT!84$hb9$%k4k9CmA%&r^54nH-}s=C4?q#<5RczCy~%f1loYWrbm7%8oQX;3`> zD~&-)u^Gr&b6ID;H?TtN_FX0-SHF51bR-M*m2tplfsW$}gu$~_L)*@OO<6`oosoB2 zm;GHaN0&y|`AoT(83iT$g*xM}UIH*fYoaMU+M2k@T%P*rGdB#nroQ!VbV__a_5G|s zne{m3sEyKnigTV$xR5}yz4>vu#6hHGPzaSs#`ES@9_yVh;c;-l7TrNlPj!+<+~-(! z3F6_R>wuJX*Y3w8%k4yuGMhD@(K$X3(|SHKbyfAaYqJgoN(^@>8AQe$*KS4lBK&YT z*LzTSH+~ttg&jaSIDD-qZjmLpZ#@OA82wEUiD2PgeGu8C!ynl=*3jD9?M7`e^jlI@ z^@gg}mWo<*xyFtpElIfOGCiX_&iJF>zG}+QP^cTIL3lg)oT_F-IE{@1;gpfdLX1+D z{Bj&Ns=Fc;onKUG1|>c^7^ZS6&3f!fBJ{cLkhcR&gPZTrk&FUvBq#511 zpF}67Is&~SJlh4Vr+|UzISjs9>P$LaU-=|?`|&))2%_|mzrDSET+W!w;Oy5KrI5_$ zQvuZHXe41ly*`QoO{RyKBspwnV=Hyq-KH{hZ&@R+vrYEir zt<4gc4Q%L5f@nE{^YU=2%ef3KgX`?1;JUkcV7#?zCse@Va{v8Ne;(=f1lTf`=t*Em^0ZP}1S(3kqk*l!zta@tiNwoa>WTw+=$d-Te4g+MO zvl=6Y%YItlzU`{UnI^i%={XYFUPN78r@D>c_1DGpsV7Q~)tai3_lD>#ZYKtR7&`>k z)2wy@hH6Zm!fVlS2mftMN`p-En!t{ZM%sgyu>O7u31MqT=UqPf+ZjsbH=iakY9dHs~(sn;s-<*(zs_R7~!WcX$NS zj0^?#M@~(-6G+jMc$D0j`sK@=&aN#_n7*>SmU6D1mLh`Q%=YrwefkKnXPm-Q#~$1{ zKKiB2!3}Mt`wpSi)_BU%YV(|g=b2v`OsL|%E(>XBX~v%hWVNp|f-LV(UZu+{JeLwC zpr@<1X4boYiD*fwcT;D|f);dbEq=L)0G`tEiS8}W0m z-K1(f;j2?Q2tTP3L9lI)WbE!<;-l{lE{?F^exf?Ke04Y{vewkc&qu17O$%J(Lt4{* z=Mzq!PrtieT!X^~i~|koj<}M@GSj5E6y>32U-&Z$Pdsz~wR7)GU!kj{Yc0(Ni{3Vq z`Dng!m88Fs_`Cl=W8x~y1z5qEm9t&?fq1gD_9(Jb4-*Hu+7VO^uOh2Xu#x-9S8qT{ zDP&gW*M_ArrP_y!Uh@qxGaQ9UZD-uiHcuTDs2NzDbc~H3OmI$=P~NBUBBv+<)-A}N(pU*7ma#I!Q{yN%J8qtg;YqB zW>AMjw%`- z)~Vptl#t;dK{c1wE(t{ySy+2%U<3_g(#lbK>$hL6*)CsdN}&KKJvQH&I5&$LV205ZaPSIGi^#%8-bcv223VA>Xl=r>@RDs#1b#nuh{mu z*d7}i=~*r&l=CoJB+}z|h6~1|Hz=JnL8e5ya=1g$$;W_6xmo|z*a;R-8nFd>$PbyX z^T{!hblby3@t;$AB1I=C8&isOFckW|AL_A=gF??L=e#T-s% zqtiVutd1qxip12#+ogmx?H!z#6*wIk*ObE{DZ#?}qjtoy0Vqy<*=Ax|kB#${sX**k zHTF!E3rchRa1T+&pTv~uY!@%R_=)gkE)*>nu5a@2j!uTY9Oq6knbi zAN2w%+~6KA$cW+n9D&14{+vS0QW1M%Ln7!|%b@}F;Zh3#gTr2WH!FgTR)y>H0mdOu z^Gvvov|ISk0%(nH7q#+eH2CE*y_E0w0;{9@DH;#!FIPXTe@@xWFvG0SZ*)P6Zzh;E zYDF1d{7Jh?g2Fn2nU*)^-Aucl6JZatr0H>QNaSNSR@1W^q| z^@y2jyZOk=NllZ!mR=gw7=v!hK~`VSRZ(i}Dl*JJWobVa4_S>)OuRaE>0Ae+U-0R25_apW(k6bS0xU!cE*L>^eYQYg;My3N|U z{6P6qxcik7P3GdbcH)uY!E^O|uWf;As#rGNTJTD>!1XDt;aX})PT_&*Z@Y_l`~F42 zaUaim;B|wn-PbgrUSHJA{Bm4$U(*4O4<@ix-8EX{Q+R}HBD0tWAv6!(^qH|v)y(^- z4kfrqj~=}nF03{NX3V$8xUGY-@Ld?xl)ruiFI%Eb>Um6 z8Qw{YE;Ufd^5;O}JsqwarI_a6#P45o22clSY5BtH9z*XX4|eB6t*(cvT=kmp_(DrT zg?6Fx$hKni?7QhXaeMQM)D$>ZAo>sojXUg##3NXjR(qv)%?3A$y>I36d$Xab)$Qhb zB5ku8bS+dABD*C;6x-%K*4K~*$olF7Ypl597q`)@Sr5ml(YYG2s93hi=`o{$`S`>t?cbGTg-H&=>VHu{6knV_>N zzx0%TeB3Qtp7qGqM@;W9_Je~zGN7;Sik*XspIco;2AJl3QLAUc*Y73@yjL{a@0;C1 z;REbAQ~N({;}zhhy@x}OAa)kZ;prtyK$|A-8JmOgV(8+!Fr8C7Sz+PTwL3n;o^ZOW zS13JFsh5dsPgK%)ebPKW2dcPc&YC?vmf);xKMPU{Rd}@>K%bpiG?xYDMFDF@ong5E> z0WLD&rFy`jBEhM+k!92$KSE#Q-Ug;PZ&>IBhB!^$Wl%7)wu+*7RPSf&dB3{VBpob! zn10*isI=-_ivL~)_{f+>@Y$=b_GHONP2L#IXbGQ89_0_t7v7DDxpvNKBhwiw^dEN*}aS+SzmDB0Q}4zUc%< z(DQtapyy(Xq+d5_>&zve<=|;mXc~)w`aey@FG71hTQuSq6WehEf@YRg8F^Ikjr`F1 z_3CW(oWqGqFsuMhawuma|9S0(<9LaxnX8%G*ascZll;z{WNxlB-*~^B-b)8dYo3~D zA+8jbsr^lgY#d#kAt(a>6;Ald=YQzEI6{L+pKhM};N+J;GbY!~AjlWR#pL%8;)v!< zXe^ssMF>RoL7n2!A9jIuAOL1|>{3}BG;<3tQE_qb54)!@K#wfShc@oXl`ndRQe*-x za+MSvHg9&72z|BeSh^-WJ)%m~*~s0rI_3Aa&m4Lf2InnO0$B#&cR_P4<=PVS*rBL& zXF}KT)&RA30?pe>F`^4Yj`W_*;Z4{z_D40&RqT)Ye*8tGIvHK#ojoWbEdUb9FD6Zx z**?yaM{B(cZeSIj+a=M?%jqa(+aYqN+mi3m2rn$|SSK4hm9f!yMOU{)AsnOcDz}fOyY$T6foJ#cqt+!C6I`4$tc$11GB; zMqZt1X6&_GT;R9zN5wl>`Iaa)Z(01@jIrElAa>l&m`Z*Sv_a9hsmi+}Qlj{Rf3qW+_-*tpow36dbC_LcE6#~^Y_!s#yx55IBq zR{M$$C>~YLXH<2#H8(e%#g7+GyDb6TD0DWyr}{(e*eFO3-o0@E3dcozFyDnPYAU&x z$jZ1yL#Jf^7_C&>F4HWrc0#2!Z4$Osdh!eAOMyJwU~xltg~p@4=6@eAB^yjLKSm*{ z5F_!KoZ)DC8u>}2Zbc&<>lNbYm5YWoy0}=?o1vVX8ucc^HJ~rj zRpmZ`<42^VTdd)E9ST3k*V135q?7uIOy`>UCqWR%b;5-mF-p+)x#-UXG)#$cq2U*s zrgIGt<%=9Bu}}oHX{Ek;@FNJnJ3jVUI^(@ee0u#*sIv4~;LfP9NI4!V!b|{ToxP7a?}3W&qz{=H z;i0X1KD)<5=1y6k*M(~d|AZUDPX`uKi9H<3s-hXh_7!H#GDRfzOa6EdVP=xH%|wqK z05xm6is8KA;FX#|Ex>yBl7t}x5B0EDur3Pjzte5xa!*fV3&(q^hIZU*w-~@er(YCL zN@Y|23Pjt9+OH2kH?+6v%7v`cU1Jx@(R~JI10|LkP#k7(v>~QMu?~A;& zkzB*^FPqyX1Vou@;v{&q9ut4t)45^J1FRWs;yg0|_N_}`2q9PE1-pq=$u6o0ctH_1 zU5ayaQ^{TvQ58`3%U#H9t3^-OOxJeBm5lOJUw2*GxwkG5`<{rgT^LFA2Z%WlmmI^T zK55u@4^#RaujHiqqaM>bi&I(hLc@~Prf4s%(BkCFyC zSnDz1J)C|e1*@6qJ0MVcSI%UDDsik9Gg8n<(c2wHj!q#Vj?Zu9Am-ktmlfeLGu=K2 z%e|KYMeo#`t6H*gKID{qIAWtucVCvRQ)%I*%rqPvGjW;opMl)SyIr}x(r^2#%>aoz zHi^}`@UXNci*qcoD97{@*w`yH)3PYGW?z~|;P#!bZ6vLTMAs_xSKmqwNy(?qIX9RO z8;6G1U^O)+ovS$iZ)-%B2ILe^w`nqPj4Lt3wxVTk$PxZ$OhMH3SbyS9(h_P0$=|NqPp501? z7^d3@)nNoPweOnV`t=bW&j_6WI@T*SiK#@?E=q$wnDJVZ%pmd&qwz<5;d<4c<>XdI`)F~6g?)o|(n`nZwYWnulH ziS3)A*r#fyHkIfBZc7!x!RVT%G9k|Ig@%V8J~cd>kc~$;$b2}M7L1G zG={30FS4G}K24-)_=t%sTShs(2liRC>!x0hS&fO9nE53*wC_{FMNy;UyWNiS}?Vx#&b&U^&36eE8Wp^0eR8=f~wJn9PhdE9{V+^Z4S%OnjYR=9Vpy}VHj44K;H!hdGYQ71=!Chu+6rAXhgnK4T)+pgFQVW|41zWsDy>@`6%1wLT`tuKZ*E%%YF zuNM@TH?N&vW!~7Pz~fge5ikX|n+1n5mhhp@ddrdK%l69~eja9<`fcj|kKSyvN=zE< z2{Isg-O=8%8Y$>@?6^DBnz`O-(8s#*?j*6QV@5SUZr|+Yb=aDTkN$;khN7m`>WyAA zJEaO`M^jocGlq{<{k^}iM~({m!-)}@8e`_wObPOi9*;VEIa&pR1T!!=uQQW##+&S@ z&siuVAApPsEMVTcZ+2Z!YfU{x?L&A}>v$dNfn*#X58g=HW|1vir>Kg(kH98AD+t7{A(jNH}ka35T zTA!)qFrz~B+Mc-6bhMjG-ZuGNMO(`EZkv)Y$vj?1w4^;fvSp7q>YN)-+`h@;Ku$Mw z8N^8rK_?*_l8n9D{+rs(7m}H zyXMmjA^D7MvFh$jNcvKI)Qv=2GKDphLA6XZz1o^&Zp)cbyiodZfy!~DzhUCm!*dRo zpGB(YiD2dn$}LgJZfj09q8nVKn3^5wJek-#mG4x0g^g@e)J-#hu+WGzi3;m*6K1qV zb+f#HT>#Yl$a*=}-==q4>Z`^~+1<>;Mp>zyXM+h*xPy`PUJhOVeyIzsy$&t{x`}sn z<2jqIFG6TI)J&r$4M=58jMbX0St!YBMW?TB^~shE!272i@yZ+x2anLZo=Is2tFw^; za5&ryu8!4d2{SlGAa%wn^+}|?vKcwMuGY5c(Ti!WO}#<5&Z=YQ1P1mGuI{yc=0L)U z6}u51KP?t&<~^sbk;rYP9UR~=6T3=#58G-FpM zgYP_mop`bXfHJVvsQ#`4;Y$O4*nabyN{QGVa_|V-*J3~%WrU-r$yP1&mHKR3H-Kc? zDMr!kqbiGvDm=^?e3HQlqTks<360U883a`c*ExPwsAQ_Gq!QXh#%y#dCt!|gx zsJAb}^6A-|HU|V^l!w))p0*`^W=4`tTY`VQorpl=i8|p{*35v7iQ(syzZvk^YErso~5mhRhd=Vr!Fo>CC zI$1X(x4CM2C7N1LAl8k9^WF6Nsc_koori}Q#wXyXCm#ye$(N-Ys1FEAeparcbsNik zxgsaG5Y6f2KuY$DB|XZU7zE7--?bRYHJnRc6=7$?*g*u3H>VkAFpwINL&H2D7<-@ow^j zLQeSsJtMr3J?BIK;nlD&AX{GBrKis_l{RWK5fb9ADOWW6UZ+LVug4Dp^O3r3C(rDJ zMDu<<^wfH#tEa5RmhvVIQ_5&aH3fkCQ#z^q9cuyJ}|Ib8WH`irKREOYE-W z%L~q{2G3qzEmf8?SU5%%Q#rV7MWRg)%W-E;1YM=9-CD?j$1CwT#2*k0;0k% zCs+~}oKD9E+1x6B^CBw3abfT(!Yc5YnV&>?A59>A{Q-2Es463|Oef#ypxBP4J4HkT zQro3UZMPKML0oNji|(_4{ImS6zVvlDTKqcWd4_Lfyfy2PU*$pv3e4NYoQgPOX9X(J zm~S16UI@HJS);K#e+evDRj)fz`b;fd3qJ7V?= zT7z{$y@ll?7K6KL6@6A2aIA#NEXwK@4}_d>7N6!8^|g7Xwdupd%B_;#E%8ff`7q0K zH@SFiYj5Cv&@;C73l0`pMqOWar@kQ@cTx%=E+Tbj!aq0Wzu0Ziw)YBrJ(i%RNUQ<* z!O(u>;1hfFY`I&VzE`V7A4+*wgW#9ML0ZywMw!{!7G4W!_S~%@g_au7p}Q-&VyrS) z3M1d$!eto4Q~uKF25CLJ_fOBaQKSt`>daHU33AR#T)MQp?&R5nkj$g7%ijAu)OTWp zddxxFp~=Gieo)U&KV<5!>4_zJ_<2!G0fOZZv001nO)VEmKspbxCF(02-G?Dv5lDt# zRBhok{(|9cNa!>uL9Ilb0wumqf9)!-U9%Yhc7wcFdwVzvw$uNj_PM!j-pBA_oGP=s z=S$LovA?b_zY>juUodw0RAkqP_!L~B-Rh^cjK(m@$d`noUQ@6KW;+3KQ6CTq{`i6=coeS8@_Fy=&Px<-lF)qmEO$A0D&jM zZ9i5Md<`47BL^HSB!@QgBwKVYMSiW2iRVISEg@>ZX70QwK~{urZAq$7cEcXGg5mCY z6M^Ze9&1=R_DobvZ)b)ZlU)$j*dS}Dtf#Bi73wbH`NDk+vZ=oE3Ug&SERU@xb#*XI9fO#_;kqN@TCuhp z6sSpZ(*5XoGxS9x4jrr`c7vdF-J{CU*SsQ+~$PXEAK&qHeY9M}Ch-tU)8jV!t2 zyZ|@KX+>+mQ<@2+<5{I=*o#~%Ls$G-WFc>jGjWuQ?XVBv54!RG&)uOr1nyO^W? z1Ri%D{Y5wZKW#P~xyirSf3p!5KrQ{Tcg6qF-D{NhHdm7*5czdK;OQo)NB*#Le@pLB zbZB_zYXGft?M%eDJrmLG0zv|}bQ*w+ak09^-MP&*mU!rRjMKo$^*K$zr5$j8KV?yC ziBol5`ixP>ZSbl79CZs$pfcjg<|^F+@HKOS6*w?y(s89}!y7^$f$+z1AX9U^nZ7fPHx}_sD=f9*k+IvyBfd|BC%Ys^_CaA0 zgtrGL7mev3k&Y!5b-sTky`PUKPTyy73$4wZ(v7cLYH{etvNzj{R`r89IQpwR1+uHY%^4UHAme0dtm*H<|z)ewn97La+9V^BW6qu&^eLbbrWY>%8|7y(GTz)(E2Gb+JD5 zdIB?~Swb)TkzqSlm9wPXwV{2Z{1GXYVQ&HF7VgS_#p{_0~)lG@`^g?2?&z!^Z zPBI*s#DY*Sw2nbe-I(0N_5qnqgvknKw->XhR9f-gae^y-=$xu*T8Igspn{^ZGHs;x z90-(q)_TrIP}D{tbM(Cc5SM|2iD>La3EG&>)_$3@e7ici9ihRTz;DPIT)r&Y$8M`< z&7VqkAQS+U>Z4=)nlyn1Dj^Z2nD8SgZJ z50!MIv_@F0GbvEKQ(HBBlcGJ3Vp7_mn#f5@Nxkr=$(&XU0m>=8r%w*rWmt#P&i_e3)>v(H*-3LQ_m?_mTme;JUzGg7%FZJCS3;#0d9fv{IkKffA@;}~8V@G~c4035bd>q4N$8LXsWO`A%m*`xlvCbJdEj_*7F;nWzDXvQb&3DsV}AWz2TKjLU(xk z`>P=kh}l(6VRN9cOcf3{+pc04eMs;HV`-@@KReRvNEyVT+Y_A z0c4OS_nh%pD$Wxa#_FGe@5CFHr>L-5T-vbVV9jDM80y^NZAZzSEGm^+n z$?2msC-D;}dZH$qg3j*gCYl=ptMlLiKC)X!*{=|i@AB3JM&`ZP$-A!BTf*1`4XW)u z^Vc5@1}qC?l#<(Xw7b&lDyb zvHh-B1$`uwv%}D6Z<(kv-otLme_WHS@vs6Q^EeQ@)rs-(KJmLk)8Rf6 zD@1qd0q^68?iy7y6c3GeOZtxD2zWdHsjnh3@~9H2rpwh@1b|xg zD}fy+>t3Of!p^e~UXJM7?(St08&*&#ol8mMP(tlbGI>dVP6J04hfY|Px+vWc74X3Q zeelWY(T%=U`oK`KxaP{Wsars)yUqla?wx79nto>o$=tN<3SN**iQ?{Vr>>7Xrx54@ zYv&pRIFA0}vp8fR))=~?0_EcR472{PE!AG#4QypDee-#hBcN=g%DuK8&T})!C8O$# H&e8t>ry$5G literal 0 HcmV?d00001 From 2297c12fc9b8456411044ac13011dda93ac67a68 Mon Sep 17 00:00:00 2001 From: revital Date: Tue, 22 Aug 2023 15:02:33 +0300 Subject: [PATCH 03/10] Edit link Signed-off-by: revital --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 401e541fad..9e072c9ae1 100644 --- a/README.md +++ b/README.md @@ -146,7 +146,7 @@ An example of experiment management with [Aim](https://aimstack.io/aim-monai-tut An example of experiment management with [MLFlow](https://www.mlflow.org/docs/latest/tracking.html), using 3D spleen segmentation as an example. ##### [MONAI bundle integrates MLFlow](./experiment_management/bundle_integrate_mlflow.ipynb) An example shows how to easily enable and customize the MLFlow for experiment management in MONAI bundle. -##### [ClearML](./experiment_management/unet_segmentation_3d_ignite_clearml) +##### [ClearML](./experiment_management/unet_segmentation_3d_ignite_clearml.ipynb) An example of experiment management with [ClearML](https://clear.ml/docs/latest/docs/), using 3D Segmentation with UNet as an example. From ebb9ea6f1be03c729ae3d1b8fcc293e03c108fdc Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 22 Aug 2023 12:13:54 +0000 Subject: [PATCH 04/10] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- .../unet_segmentation_3d_ignite_clearml.ipynb | 18 +++++++++++------- 1 file changed, 11 insertions(+), 7 deletions(-) diff --git a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb index b070c661c6..9bb14cfd82 100644 --- a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb +++ b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb @@ -79,7 +79,7 @@ "%env CLEARML_API_HOST=''\n", "%env CLEARML_FILES_HOST=''\n", "%env CLEARML_API_ACCESS_KEY=''\n", - "%env CLEARML_API_SECRET_KEY=''\n" + "%env CLEARML_API_SECRET_KEY=''" ] }, { @@ -115,6 +115,7 @@ " MeanDice,\n", " StatsHandler,\n", ")\n", + "\n", "# import the clearml handlers\n", "from monai.handlers.clearml_handlers import ClearMLImageHandler, ClearMLStatsHandler\n", "from monai.losses import DiceLoss\n", @@ -133,6 +134,7 @@ "\n", "import ignite\n", "import torch\n", + "\n", "print_config()" ] }, @@ -273,7 +275,7 @@ "source": [ "# Create UNet, DiceLoss and Adam optimizer\n", "\n", - "device = None # torch.device(\"cuda:0\")\n", + "device = None # torch.device(\"cuda:0\")\n", "net = UNet(\n", " spatial_dims=3,\n", " in_channels=1,\n", @@ -353,9 +355,10 @@ "task_name = \"UNet segmentation 3d\"\n", "project_name = \"Monai example\"\n", "\n", - "train_clearml_stats_handler = ClearMLStatsHandler(task_name=task_name,\n", - " project_name=project_name, log_dir=log_dir, output_transform=lambda x: x)\n", - "train_clearml_stats_handler.attach(trainer)\n" + "train_clearml_stats_handler = ClearMLStatsHandler(\n", + " task_name=task_name, project_name=project_name, log_dir=log_dir, output_transform=lambda x: x\n", + ")\n", + "train_clearml_stats_handler.attach(trainer)" ] }, { @@ -447,7 +450,8 @@ "# label and model output in the last batch\n", "# here we draw the 3D output as GIF format along Depth\n", "# axis, at every validation epoch\n", - "val_clearml_image_handler = ClearMLImageHandler(task_name=task_name,\n", + "val_clearml_image_handler = ClearMLImageHandler(\n", + " task_name=task_name,\n", " project_name=project_name,\n", " log_dir=log_dir,\n", " batch_transform=lambda batch: (batch[0], batch[1]),\n", @@ -485,7 +489,7 @@ " shuffle=True,\n", " num_workers=8,\n", " # pin_memory=torch.cuda.is_available(),\n", - " pin_memory=False\n", + " pin_memory=False,\n", ")\n", "\n", "max_epochs = 10\n", From 557e7da90baba0447c2d2a06f7c7408b5f80fc73 Mon Sep 17 00:00:00 2001 From: revital Date: Tue, 29 Aug 2023 09:40:21 +0300 Subject: [PATCH 05/10] Edits --- .../unet_segmentation_3d_ignite_clearml.ipynb | 81 +++++++++---------- 1 file changed, 39 insertions(+), 42 deletions(-) diff --git a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb index b070c661c6..2addd6948a 100644 --- a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb +++ b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb @@ -28,59 +28,25 @@ }, { "cell_type": "markdown", - "metadata": { - "id": "VUefxTkGGTAc" - }, "source": [ "## Setup environment\n", "\n", "`clearml` comes as part of the `monai[all]` installation. For more information about integrating ClearML into your Monai code, see [here](https://clear.ml/docs/latest/docs/integrations/monai). For more information about using ClearML (experiment management, data management, pipelines, model serving, and more), see [ClearML's official documentation](https://clear.ml/docs/latest/docs/)." - ] + ], + "metadata": { + "collapsed": false + } }, { "cell_type": "code", "execution_count": null, - "metadata": { - "id": "OUMIxMjvGTAd" - }, "outputs": [], "source": [ "!python -c \"import monai\" || pip install -q \"monai-weekly[ignite, nibabel, tensorboard, clearml]\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "s-ORDi_qZTYM" - }, - "source": [ - "### Set up ClearML ⚓\n", - "\n", - "1. To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 server options:\n", - "\n", - " * Sign up for free to the [ClearML Hosted Service](https://app.clear.ml/)\n", - " * Set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server).\n", - "\n", - "\n", - "\n", - "2. Add you ClearML credentials below. ClearML will use these credentials to connect to your server (see instructions for generating credentials [here](https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps/#jupyter-notebook))." - ] - }, - { - "cell_type": "code", - "execution_count": null, + ], "metadata": { - "id": "ofvwifHWG0SK" - }, - "outputs": [], - "source": [ - "# clearml credentials\n", - "%env CLEARML_WEB_HOST=''\n", - "%env CLEARML_API_HOST=''\n", - "%env CLEARML_FILES_HOST=''\n", - "%env CLEARML_API_ACCESS_KEY=''\n", - "%env CLEARML_API_SECRET_KEY=''\n" - ] + "collapsed": false + } }, { "cell_type": "markdown", @@ -102,7 +68,6 @@ "import glob\n", "import logging\n", "import os\n", - "from pathlib import Path\n", "import shutil\n", "import sys\n", "import tempfile\n", @@ -136,6 +101,38 @@ "print_config()" ] }, + { + "cell_type": "markdown", + "source": [ + "## Set up ClearML ⚓\n", + "\n", + "1. To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 server options:\n", + "\n", + " * Sign up for free to the [ClearML Hosted Service](https://app.clear.ml/)\n", + " * Set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server).\n", + "\n", + "2. Add you ClearML credentials below. ClearML will use these credentials to connect to your server (see instructions for generating credentials [here](https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps/#jupyter-notebook))." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "# clearml credentials\n", + "%env CLEARML_WEB_HOST=''\n", + "%env CLEARML_API_HOST=''\n", + "%env CLEARML_FILES_HOST=''\n", + "%env CLEARML_API_ACCESS_KEY=''\n", + "%env CLEARML_API_SECRET_KEY=''\n" + ], + "metadata": { + "collapsed": false + } + }, { "cell_type": "markdown", "metadata": { From 468d0a729870712a39c443ac728388d1ddb2b057 Mon Sep 17 00:00:00 2001 From: revital Date: Tue, 29 Aug 2023 09:46:54 +0300 Subject: [PATCH 06/10] fix link --- .../unet_segmentation_3d_ignite_clearml.ipynb | 29 +++++++------------ 1 file changed, 11 insertions(+), 18 deletions(-) diff --git a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb index 7a19a495af..847f13c918 100644 --- a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb +++ b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb @@ -19,7 +19,7 @@ "\n", "# Experiment Management with ClearML\n", "\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/main/3d_segmentation/unet_segmentation_3d_ignite.ipynb)\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/main/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb)\n", "\n", "This tutorial shows how to use ClearML to manage MONAI experiments. You can integrate ClearML into your code using Monai's built-in handlers: `ClearMLImageHandler`, `ClearMLStatsHandler`, and `ModelCheckpoint`.\n", "\n", @@ -28,21 +28,18 @@ }, { "cell_type": "markdown", - "metadata": { - "id": "VUefxTkGGTAc" - }, "source": [ "## Setup environment\n", "\n", "`clearml` comes as part of the `monai[all]` installation. For more information about integrating ClearML into your Monai code, see [here](https://clear.ml/docs/latest/docs/integrations/monai). For more information about using ClearML (experiment management, data management, pipelines, model serving, and more), see [ClearML's official documentation](https://clear.ml/docs/latest/docs/)." - ] + ], + "metadata": { + "collapsed": false + } }, { "cell_type": "code", "execution_count": null, - "metadata": { - "id": "OUMIxMjvGTAd" - }, "outputs": [], "source": [ "!python -c \"import monai\" || pip install -q \"monai-weekly[ignite, nibabel, tensorboard, clearml]\"" @@ -83,7 +80,6 @@ " MeanDice,\n", " StatsHandler,\n", ")\n", - "\n", "# import the clearml handlers\n", "from monai.handlers.clearml_handlers import ClearMLImageHandler, ClearMLStatsHandler\n", "from monai.losses import DiceLoss\n", @@ -102,7 +98,6 @@ "\n", "import ignite\n", "import torch\n", - "\n", "print_config()" ] }, @@ -275,7 +270,7 @@ "source": [ "# Create UNet, DiceLoss and Adam optimizer\n", "\n", - "device = None # torch.device(\"cuda:0\")\n", + "device = None # torch.device(\"cuda:0\")\n", "net = UNet(\n", " spatial_dims=3,\n", " in_channels=1,\n", @@ -355,10 +350,9 @@ "task_name = \"UNet segmentation 3d\"\n", "project_name = \"Monai example\"\n", "\n", - "train_clearml_stats_handler = ClearMLStatsHandler(\n", - " task_name=task_name, project_name=project_name, log_dir=log_dir, output_transform=lambda x: x\n", - ")\n", - "train_clearml_stats_handler.attach(trainer)" + "train_clearml_stats_handler = ClearMLStatsHandler(task_name=task_name,\n", + " project_name=project_name, log_dir=log_dir, output_transform=lambda x: x)\n", + "train_clearml_stats_handler.attach(trainer)\n" ] }, { @@ -450,8 +444,7 @@ "# label and model output in the last batch\n", "# here we draw the 3D output as GIF format along Depth\n", "# axis, at every validation epoch\n", - "val_clearml_image_handler = ClearMLImageHandler(\n", - " task_name=task_name,\n", + "val_clearml_image_handler = ClearMLImageHandler(task_name=task_name,\n", " project_name=project_name,\n", " log_dir=log_dir,\n", " batch_transform=lambda batch: (batch[0], batch[1]),\n", @@ -489,7 +482,7 @@ " shuffle=True,\n", " num_workers=8,\n", " # pin_memory=torch.cuda.is_available(),\n", - " pin_memory=False,\n", + " pin_memory=False\n", ")\n", "\n", "max_epochs = 10\n", From 8d504276328451959f4c266535018130f4b48457 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 29 Aug 2023 06:47:55 +0000 Subject: [PATCH 07/10] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- .../unet_segmentation_3d_ignite_clearml.ipynb | 18 +++++++++++------- 1 file changed, 11 insertions(+), 7 deletions(-) diff --git a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb index 847f13c918..f96f97c1a0 100644 --- a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb +++ b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb @@ -80,6 +80,7 @@ " MeanDice,\n", " StatsHandler,\n", ")\n", + "\n", "# import the clearml handlers\n", "from monai.handlers.clearml_handlers import ClearMLImageHandler, ClearMLStatsHandler\n", "from monai.losses import DiceLoss\n", @@ -98,6 +99,7 @@ "\n", "import ignite\n", "import torch\n", + "\n", "print_config()" ] }, @@ -127,7 +129,7 @@ "%env CLEARML_API_HOST=''\n", "%env CLEARML_FILES_HOST=''\n", "%env CLEARML_API_ACCESS_KEY=''\n", - "%env CLEARML_API_SECRET_KEY=''\n" + "%env CLEARML_API_SECRET_KEY=''" ], "metadata": { "collapsed": false @@ -270,7 +272,7 @@ "source": [ "# Create UNet, DiceLoss and Adam optimizer\n", "\n", - "device = None # torch.device(\"cuda:0\")\n", + "device = None # torch.device(\"cuda:0\")\n", "net = UNet(\n", " spatial_dims=3,\n", " in_channels=1,\n", @@ -350,9 +352,10 @@ "task_name = \"UNet segmentation 3d\"\n", "project_name = \"Monai example\"\n", "\n", - "train_clearml_stats_handler = ClearMLStatsHandler(task_name=task_name,\n", - " project_name=project_name, log_dir=log_dir, output_transform=lambda x: x)\n", - "train_clearml_stats_handler.attach(trainer)\n" + "train_clearml_stats_handler = ClearMLStatsHandler(\n", + " task_name=task_name, project_name=project_name, log_dir=log_dir, output_transform=lambda x: x\n", + ")\n", + "train_clearml_stats_handler.attach(trainer)" ] }, { @@ -444,7 +447,8 @@ "# label and model output in the last batch\n", "# here we draw the 3D output as GIF format along Depth\n", "# axis, at every validation epoch\n", - "val_clearml_image_handler = ClearMLImageHandler(task_name=task_name,\n", + "val_clearml_image_handler = ClearMLImageHandler(\n", + " task_name=task_name,\n", " project_name=project_name,\n", " log_dir=log_dir,\n", " batch_transform=lambda batch: (batch[0], batch[1]),\n", @@ -482,7 +486,7 @@ " shuffle=True,\n", " num_workers=8,\n", " # pin_memory=torch.cuda.is_available(),\n", - " pin_memory=False\n", + " pin_memory=False,\n", ")\n", "\n", "max_epochs = 10\n", From 47cdbad9fba0859f0b572e41798e572efa5bd98c Mon Sep 17 00:00:00 2001 From: revital Date: Tue, 29 Aug 2023 09:48:26 +0300 Subject: [PATCH 08/10] DCO Remediation Commit for revital I, revital , hereby add my Signed-off-by to this commit: 557e7da90baba0447c2d2a06f7c7408b5f80fc73 I, revital , hereby add my Signed-off-by to this commit: 468d0a729870712a39c443ac728388d1ddb2b057 Signed-off-by: revital --- experiment_management/unet_segmentation_3d_ignite_clearml.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb index 847f13c918..a848af2eee 100644 --- a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb +++ b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb @@ -104,7 +104,7 @@ { "cell_type": "markdown", "source": [ - "## Set up ClearML ⚓\n", + "## Setup ClearML ⚓\n", "\n", "1. To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 server options:\n", "\n", From db6e8b07793533640ac118f4bff58b2760e6a07b Mon Sep 17 00:00:00 2001 From: revital Date: Thu, 23 Nov 2023 15:37:18 +0200 Subject: [PATCH 09/10] Edit ClearML example --- .../unet_segmentation_3d_ignite_clearml.ipynb | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb index 5121b45dfd..ba30c27bb0 100644 --- a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb +++ b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb @@ -21,7 +21,7 @@ "\n", "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/main/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb)\n", "\n", - "This tutorial shows how to use ClearML to manage MONAI experiments. You can integrate ClearML into your code using Monai's built-in handlers: `ClearMLImageHandler`, `ClearMLStatsHandler`, and `ModelCheckpoint`.\n", + "This tutorial shows how to use ClearML to manage MONAI experiments. You can integrate ClearML into your code using MONAI's built-in handlers: `ClearMLImageHandler`, `ClearMLStatsHandler`, and `ModelCheckpoint`.\n", "\n", "The MONAI example used here is [3D segmentation with UNet](https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/unet_segmentation_3d_ignite.ipynb)." ] @@ -31,7 +31,7 @@ "source": [ "## Setup environment\n", "\n", - "`clearml` comes as part of the `monai[all]` installation. For more information about integrating ClearML into your Monai code, see [here](https://clear.ml/docs/latest/docs/integrations/monai). For more information about using ClearML (experiment management, data management, pipelines, model serving, and more), see [ClearML's official documentation](https://clear.ml/docs/latest/docs/)." + "`clearml` comes as part of the `monai[all]` installation. For more information about integrating ClearML into your MONAI code, see [here](https://clear.ml/docs/latest/docs/integrations/monai). For more information about using ClearML (experiment management, data management, pipelines, model serving, and more), see [ClearML's official documentation](https://clear.ml/docs/latest/docs/)." ], "metadata": { "collapsed": false @@ -350,7 +350,7 @@ "# ClearMLStatsHandler plots loss at every iteration\n", "# Creates a ClearML Task which logs the scalar plots\n", "task_name = \"UNet segmentation 3d\"\n", - "project_name = \"Monai example\"\n", + "project_name = \"MONAI example\"\n", "\n", "train_clearml_stats_handler = ClearMLStatsHandler(\n", " task_name=task_name, project_name=project_name, log_dir=log_dir, output_transform=lambda x: x\n", @@ -513,7 +513,7 @@ { "cell_type": "markdown", "source": [ - "![Monai ClearML Models](./../figures/monai_clearml_models.png)" + "![MONAI ClearML Models](./../figures/monai_clearml_models.png)" ], "metadata": { "id": "Uya6hN7At-C6" @@ -534,7 +534,7 @@ { "cell_type": "markdown", "source": [ - "![monai_clearml_scalars.png](./../figures/monai_clearml_scalars.png)" + "![MONAI ClearML scalars.png](./../figures/monai_clearml_scalars.png)" ], "metadata": { "id": "DCLhp4e2uKsd" @@ -554,7 +554,7 @@ { "cell_type": "markdown", "source": [ - "![monai_clearml_debug_samples.png](./../figures/monai_clearml_debug_samples.png)" + "![MONAI ClearML Debug Samples.png](./../figures/monai_clearml_debug_samples.png)" ], "metadata": { "id": "AFLJauKxt-Yy" From 60020e1dafe4c1e29969d9d070d51ca26db19d1f Mon Sep 17 00:00:00 2001 From: revital Date: Thu, 23 Nov 2023 15:46:16 +0200 Subject: [PATCH 10/10] DCO Remediation Commit for revital I, revital , hereby add my Signed-off-by to this commit: db6e8b07793533640ac118f4bff58b2760e6a07b Signed-off-by: revital --- experiment_management/unet_segmentation_3d_ignite_clearml.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb index ba30c27bb0..e0c7cb8073 100644 --- a/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb +++ b/experiment_management/unet_segmentation_3d_ignite_clearml.ipynb @@ -113,7 +113,7 @@ " * Sign up for free to the [ClearML Hosted Service](https://app.clear.ml/)\n", " * Set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server).\n", "\n", - "2. Add you ClearML credentials below. ClearML will use these credentials to connect to your server (see instructions for generating credentials [here](https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps/#jupyter-notebook))." + "2. Add your ClearML credentials below. ClearML will use these credentials to connect to your server (see instructions for generating credentials [here](https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps/#jupyter-notebook))." ], "metadata": { "collapsed": false